Betaine is a very effective osmoprotectant found in many organisms. In high plants, betaine is synthesized by oxidation of choline in two sequential steps: choline-->betaine aldehyde-->betaine. The first step is...Betaine is a very effective osmoprotectant found in many organisms. In high plants, betaine is synthesized by oxidation of choline in two sequential steps: choline-->betaine aldehyde-->betaine. The first step is catalyzed by choline monooxygenase (CMO). In this study, the full-length CMO cDNA (1 820 bp) was cloned from halophyte Suaeda liaotungensis Kitag by RT-PCR and RACE. It included a 123 bp 5' UTR, a 368 bp 3' UTR and a 1 329 bp open reading frame encoding a 442-amino-acid polypeptide with 77%, 72% and 74% sequence identity compared to CMOs from spinach, sugar beet and Atriplex hortensis, respectively. The CMO open reading frame (ORF) was cloned and the plant expression vector pBI121-CMO was constructed. It was transferred into tobacco ( Nicotiana tabacum L. ev. 89) via Agrobacterium mediation. PCR and Southern blotting analysis showed that the CMO gene was integrated into tobacco genome. Transgenic tobacco plants contained higher amount of betaine than that of control plants and were able to survive on MS medium containing 250 mmol/L NaCl. Relative electronic conductivity demonstrated less membrane damage in transgenic plants as in the wild type.展开更多
基金This work was supported by Natural Science Foundation of China (Grant No.30571141)Natural Science Foundation of Jiangsu province (Grant No.BK2005090)+1 种基金Ph.D program foundation from Ministry of Education (20060307035)Changjiang scholars and innovative research team in university (PCISRT).
文摘Betaine is a very effective osmoprotectant found in many organisms. In high plants, betaine is synthesized by oxidation of choline in two sequential steps: choline-->betaine aldehyde-->betaine. The first step is catalyzed by choline monooxygenase (CMO). In this study, the full-length CMO cDNA (1 820 bp) was cloned from halophyte Suaeda liaotungensis Kitag by RT-PCR and RACE. It included a 123 bp 5' UTR, a 368 bp 3' UTR and a 1 329 bp open reading frame encoding a 442-amino-acid polypeptide with 77%, 72% and 74% sequence identity compared to CMOs from spinach, sugar beet and Atriplex hortensis, respectively. The CMO open reading frame (ORF) was cloned and the plant expression vector pBI121-CMO was constructed. It was transferred into tobacco ( Nicotiana tabacum L. ev. 89) via Agrobacterium mediation. PCR and Southern blotting analysis showed that the CMO gene was integrated into tobacco genome. Transgenic tobacco plants contained higher amount of betaine than that of control plants and were able to survive on MS medium containing 250 mmol/L NaCl. Relative electronic conductivity demonstrated less membrane damage in transgenic plants as in the wild type.