In near-infrared (NIR) analysis of plant extracts, excessive background often exists in near-infrared spectra. The detection of active constituents is difficult because of excessive background, and correction of this ...In near-infrared (NIR) analysis of plant extracts, excessive background often exists in near-infrared spectra. The detection of active constituents is difficult because of excessive background, and correction of this problem remains difficult. In this work, the orthogonal signal correction (OSC) method was used to correct excessive background. The method was also compared with several classical background correction methods, such as offset correction, multiplicative scatter correction (MSC), standard normal variate (SNV) transformation, de-trending (DT), first derivative, second derivative and wavelet methods. A simulated dataset and a real NIR spectral dataset were used to test the efficiency of different background correction methods. The results showed that OSC is the only effective method for correcting excessive background.展开更多
For anomaly detection,anomalies existing in the background will affect the detection performance.Accordingly,a background refinement method based on the local density is proposed to remove the anomalies from thebackgr...For anomaly detection,anomalies existing in the background will affect the detection performance.Accordingly,a background refinement method based on the local density is proposed to remove the anomalies from thebackground.In this work,the local density is measured by its spectral neighbors through a certain radius which is obtained by calculating the mean median of the distance matrix.Further,a two-step segmentation strategy is designed.The first segmentation step divides the original background into two subsets,a large subset composed by background pixels and a small subset containing both background pixels and anomalies.The second segmentation step employing Otsu method with an aim to obtain a discrimination threshold is conducted on the small subset.Then the pixels whose local densities are lower than the threshold are removed.Finally,to validate the effectiveness of the proposed method,it combines Reed-Xiaoli detector and collaborative-representation-based detector to detect anomalies.Experiments are conducted on two real hyperspectral datasets.Results show that the proposed method achieves better detection performance.展开更多
A double beam near-infrared spectrometer is developed to compensate the water absorption and instrumental drift in intensity. The spectrometer may be used for both single and double beam measurements,and the two opera...A double beam near-infrared spectrometer is developed to compensate the water absorption and instrumental drift in intensity. The spectrometer may be used for both single and double beam measurements,and the two operation modes are compared. The results show that the double beam technique eliminates instrumental drift in the single beam measurement and therefore the stability of the system increases by more than 20%. The compensation of the double beam system on water absorption is verified by the measurement of fat content in milk. The results show that the spectrum data based on double beam mode get better calibration model and lower prediction error than traditional single beam mode.展开更多
Lightning is a typical example of an instantaneous random point source target. It has close connection with severe convective phenomena such as a thunderstorm, whose distribution, variation, position and forecasting c...Lightning is a typical example of an instantaneous random point source target. It has close connection with severe convective phenomena such as a thunderstorm, whose distribution, variation, position and forecasting can be acquired through lightning observation. In this paper, we discuss the way to achieve instantaneous lightning signal intensification and detection from geostationary orbit by using the differences between the lightning signal and the slowly changing background noise such as that of cloud, land and ocean, combining three methods, spectral filtering, spatial filtering and background noise, enabling removal between frames. After six months of operation in orbit, lightning within the coverage of the Geostationary Lightning Imager was effectively detected, strongly supporting the case for shorttime and real-time early warning, forecasting and tracking of severe convective phenomena in China.展开更多
基金Project supported by the Zhejiang Province Key Technologies R & DProgram (No. 021103549)the National Key Technologies R & DProgram (No. 2001BA701A45), China
文摘In near-infrared (NIR) analysis of plant extracts, excessive background often exists in near-infrared spectra. The detection of active constituents is difficult because of excessive background, and correction of this problem remains difficult. In this work, the orthogonal signal correction (OSC) method was used to correct excessive background. The method was also compared with several classical background correction methods, such as offset correction, multiplicative scatter correction (MSC), standard normal variate (SNV) transformation, de-trending (DT), first derivative, second derivative and wavelet methods. A simulated dataset and a real NIR spectral dataset were used to test the efficiency of different background correction methods. The results showed that OSC is the only effective method for correcting excessive background.
基金Projects(61405041,61571145)supported by the National Natural Science Foundation of ChinaProject(ZD201216)supported by the Key Program of Heilongjiang Natural Science Foundation,China+1 种基金Project(RC2013XK009003)supported by Program Excellent Academic Leaders of Harbin,ChinaProject(HEUCF1508)supported by the Fundamental Research Funds for the Central Universities,China
文摘For anomaly detection,anomalies existing in the background will affect the detection performance.Accordingly,a background refinement method based on the local density is proposed to remove the anomalies from thebackground.In this work,the local density is measured by its spectral neighbors through a certain radius which is obtained by calculating the mean median of the distance matrix.Further,a two-step segmentation strategy is designed.The first segmentation step divides the original background into two subsets,a large subset composed by background pixels and a small subset containing both background pixels and anomalies.The second segmentation step employing Otsu method with an aim to obtain a discrimination threshold is conducted on the small subset.Then the pixels whose local densities are lower than the threshold are removed.Finally,to validate the effectiveness of the proposed method,it combines Reed-Xiaoli detector and collaborative-representation-based detector to detect anomalies.Experiments are conducted on two real hyperspectral datasets.Results show that the proposed method achieves better detection performance.
基金This work was supported by the 10th Five Years Plan of China (No.2004BA706B12) the Natural Science Key Foundation ofTianjin (No.023800411).
文摘A double beam near-infrared spectrometer is developed to compensate the water absorption and instrumental drift in intensity. The spectrometer may be used for both single and double beam measurements,and the two operation modes are compared. The results show that the double beam technique eliminates instrumental drift in the single beam measurement and therefore the stability of the system increases by more than 20%. The compensation of the double beam system on water absorption is verified by the measurement of fat content in milk. The results show that the spectrum data based on double beam mode get better calibration model and lower prediction error than traditional single beam mode.
文摘Lightning is a typical example of an instantaneous random point source target. It has close connection with severe convective phenomena such as a thunderstorm, whose distribution, variation, position and forecasting can be acquired through lightning observation. In this paper, we discuss the way to achieve instantaneous lightning signal intensification and detection from geostationary orbit by using the differences between the lightning signal and the slowly changing background noise such as that of cloud, land and ocean, combining three methods, spectral filtering, spatial filtering and background noise, enabling removal between frames. After six months of operation in orbit, lightning within the coverage of the Geostationary Lightning Imager was effectively detected, strongly supporting the case for shorttime and real-time early warning, forecasting and tracking of severe convective phenomena in China.