The reconstruction of background noise from an error signal of an adaptive filter is a key issue for developing Variable Step-Size Normalized Least Mean Square (VSS-NLMS) algorithm in the context of Echo Cancellation ...The reconstruction of background noise from an error signal of an adaptive filter is a key issue for developing Variable Step-Size Normalized Least Mean Square (VSS-NLMS) algorithm in the context of Echo Cancellation (EC). The core parameter in this algorithm is the Background Noise Power (BNP); in the estimation of BNP, the power difference between the desired signal and the filter output, statistically equaling to the error signal power, has been widely used in a rough manner. In this study, a precise BNP estimate is implemented by multiplying the rough estimate with a corrective factor, taking into consideration the fact that the error signal consists of background noise and misalignment noise. This corrective factor is obtained by subtracting half of the latest VSS value from 1 after analyzing the ratio of BNP to the misalignment noise. Based on the precise BNP estimate, the PVSS-NLMS algorithm suitable for the EC system is eventually proposed. In practice, the proposed algorithm exhibits a significant advantage of easier controllability application, as prior knowledge of the EC environment can be neglected. The simulation results support the preciseness of the BNP estimation and the effectiveness of the proposed algorithm.展开更多
文摘The reconstruction of background noise from an error signal of an adaptive filter is a key issue for developing Variable Step-Size Normalized Least Mean Square (VSS-NLMS) algorithm in the context of Echo Cancellation (EC). The core parameter in this algorithm is the Background Noise Power (BNP); in the estimation of BNP, the power difference between the desired signal and the filter output, statistically equaling to the error signal power, has been widely used in a rough manner. In this study, a precise BNP estimate is implemented by multiplying the rough estimate with a corrective factor, taking into consideration the fact that the error signal consists of background noise and misalignment noise. This corrective factor is obtained by subtracting half of the latest VSS value from 1 after analyzing the ratio of BNP to the misalignment noise. Based on the precise BNP estimate, the PVSS-NLMS algorithm suitable for the EC system is eventually proposed. In practice, the proposed algorithm exhibits a significant advantage of easier controllability application, as prior knowledge of the EC environment can be neglected. The simulation results support the preciseness of the BNP estimation and the effectiveness of the proposed algorithm.