期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
CSP线热轧薄板的组织演变及微观取向研究 被引量:8
1
作者 于浩 康永林 +6 位作者 傅杰 柳得橹 王中丙 李烈军 范胜标 陈贵江 李柯新 《钢铁》 CAS CSCD 北大核心 2002年第10期38-42,共5页
利用背电子散射衍射 (EBSD)技术 ,研究了 3种不同厚度规格的低碳钢 CSP热轧薄板的组织演变和微观取向 ,实验结果表明 :热轧终轧组织为再结晶奥氏体和变形奥氏体的混合体 ;相变后的铁素体晶粒中含有亚晶和位错 ,导致板带的强度升高而伸... 利用背电子散射衍射 (EBSD)技术 ,研究了 3种不同厚度规格的低碳钢 CSP热轧薄板的组织演变和微观取向 ,实验结果表明 :热轧终轧组织为再结晶奥氏体和变形奥氏体的混合体 ;相变后的铁素体晶粒中含有亚晶和位错 ,导致板带的强度升高而伸长率下降。板带的最终组织中含有残留的热轧织构 ,织构组分较杂且弱。最终组织中的铁素体晶粒尺寸不均匀 ,由 展开更多
关键词 热轧薄板 CSP 背电子散射衍射 微观组织 织构
下载PDF
Residual elastic stress strain field and geometrically necessary dislocation density distribution around nano-indentation in TA15 titanium alloy 被引量:7
2
作者 何东 朱景川 +3 位作者 来忠红 刘勇 杨夏炜 农智升 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期7-13,共7页
Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri... Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density. 展开更多
关键词 nano-hardness stress strain fields geometrically necessary dislocation NANOINDENTATION electron backscatter diffraction TA15 titanium alloy
下载PDF
Texture Analysis of Damascene Copper Interconnects 被引量:2
3
作者 王晓冬 吉元 +4 位作者 钟涛兴 李志国 夏洋 刘丹敏 肖卫强 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第6期1136-1140,共5页
Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is... Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is the dominate component.As-deposited interconnects undergo the phenomenon of self-annealing at RT,in which some abnormally large grains are found. Lower aspect ratio of lines and anneal treatment procured larger grains and stronger (111) texture. Meanwhile, the intensity proportion of other textures with lower strain energy to (111) texture is decreased. As-deposited specimens reveal (111)(112? and (111) (231) components, (111) (110) component appeared and (111) (112? and (111) (231) components were developed during the annealing process. High angle boundaries are dominant in all specimens, boundaries with a misorientation of 55°-60° and ∑3 ones in higher proportion, followed by lower boundaries with a misorientation of 35°-40° and 29 boundaries. As the aspect ratio of lines and anneal treatment increase,there is a gradual in- crement in ∑3 boundaries and a decrease in ∑9 boundaries. 展开更多
关键词 Cu interconnects TEXTURE MISORIENTATION coincident site lattice boundaries EBSD
下载PDF
Superplastic forming characteristics of AZ41 magnesium alloy 被引量:9
4
作者 S.TAYLOR G.D.WEST +2 位作者 E.MOGIRE F.TANG H.R.KOTADIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期648-654,共7页
An AZ41 magnesium alloy in the hot-rolled condition without further thermomechanical processing to modify its microstructure was investigated to establish its suitability for use within a superplastic forming process ... An AZ41 magnesium alloy in the hot-rolled condition without further thermomechanical processing to modify its microstructure was investigated to establish its suitability for use within a superplastic forming process and to establish optimum forming parameters.Formability was assessed using elevated temperature tensile testing and hot gas bulging,across a range of strain rates(1×10^(−1)−1×10^(−3)s^(−1))and temperatures(350−450℃).Circle grid analysis with GOM Aramis cameras was used to understand peak strains and material thinning in relation to industrial forming processes.Post forming EBSD and STEM analysis was conducted to understand the mechanisms responsible for the materials formability,with dynamic recrystallization being clearly evident.Peak elongation of 520%was achieved at 450℃ and 1×10^(−3)s^(−1);industrially relevant elongation was achieved at 1×10^(−2) s^(−1) at both 450℃(195%)and 400℃(170%). 展开更多
关键词 MAGNESIUM superplastic forming SUPERPLASTICITY electron back-scattered diffraction(EBSD) AZ41 magnesium alloy
下载PDF
A yttrium-containing high-temperature titanium alloy additively manufactured by selective electron beam melting 被引量:4
5
作者 逯圣路 汤慧萍 +3 位作者 马前 洪权 曾立英 D.H.StJohn 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2857-2863,共7页
A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and... A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and textures were studied using scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and electron backscattered diffraction(EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50-250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen(7×10-4, mass fraction) and yttrium(10-3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles. 展开更多
关键词 titanium alloys additive manufacturing rare earth elements YTTRIUM selective electron beam melting
下载PDF
Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate 被引量:6
6
作者 K.JESHURUN LIJAY J.DAVID RAJA SELVAM +1 位作者 I.DINAHARAN S.J.VIJAY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1791-1800,共10页
Aluminum alloys AA6061 reinforced with various amounts (0, 2.5% and 5%, mass fraction) of TiC particles were synthesized by the in situ reaction of inorganic salt K2TiF6 and ceramic particle SiC with molten aluminum... Aluminum alloys AA6061 reinforced with various amounts (0, 2.5% and 5%, mass fraction) of TiC particles were synthesized by the in situ reaction of inorganic salt K2TiF6 and ceramic particle SiC with molten aluminum. The casting was carried out at an elevated temperature and held for a longer duration to decompose SiC to release carbon atoms. X-ray diffraction patterns of the prepared AMCs clearly revealed the formation of TiC particles without the occurrence of any other intermetallic compounds. The microstructure of the prepared AA6061/TiC AMCs was studied using field emission scanning electron microscope (FESEM) and electron backscatter diffraction (EBSD). The in situ formed TiC particles were characterized with homogeneous distribution, clear interface, good bonding and various shapes such as cubic, spherical and hexagonal. EBSD maps showed the grain refinement action of TiC particles on the produced composites. The formation of TiC particles boosted the microhardness and ultimate tensile strength (UTS) of the AMCs. 展开更多
关键词 aluminum matrix composite titanium carbide electron backscatter diffraction CASTING microstructure mechanical properties
下载PDF
Influence of exfoliation corrosion on tensile properties of a high strength Al-Zn-Mg-Cu alloy 被引量:3
7
作者 刘胜胆 廖文博 +2 位作者 唐建国 张新明 刘心宇 《Journal of Central South University》 SCIE EI CAS 2013年第1期1-6,共6页
The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM... The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). After exfoliation corrosion immersion, blisters and corrosion pits can be seen on the sheet surface, which lead to loss of materials and notches. A number of intergranular cracks are observed to initiate at the bottom of the corrosion-induced notches and propagate rapidly into the bulk materials during tensile. Consequently, exfoliation corrosion results in significant loss of strength and brittle fracture. EBSD results show that the crack propagation path is primarily along the grain boundaries with misorientation of-45°, and coincidence site lattice (CSL) boundaries are slightly more resistant to crack. 展开更多
关键词 EXFOLIATION tensile properties FRACTURE grain boundaries Al-Zn-Mg-Cu alloy
下载PDF
Carbide precipitation and microstructure refinement of Cr-Co-Mo-Ni bearing steel during hot deformation 被引量:5
8
作者 袁晓虹 郑善举 +1 位作者 杨卯生 赵昆渝 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3265-3274,共10页
The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1... The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1. The activation energy(Q) for the tested steel is calculated to be around 682.99 k J/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization(DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides(〈1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction(EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement. 展开更多
关键词 high-alloy steel Z parameter grain size refinement carbides dynamic recrystallization (DRX) mechanism
下载PDF
Analysis of surface orange peel of aluminum-alloy automobile sheet by using of EBSD and X-ray diffraction 被引量:7
9
作者 Ma Mingtu Sun Zhifu +2 位作者 Wang Zhiwen Lu Hongzhou Zhou Mingbo 《Engineering Sciences》 EI 2012年第6期7-11,37,共6页
The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that format... The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process.The grain size has significant effect on deformation uniform and texture formation.Coarse grains were easy to produce nonuniform deformation and texture,which would produce surface orange peel after tensile deformation. 展开更多
关键词 ALUMINUM-ALLOY automotive sheet orange peel TEXTURE EBSD X-ray diffraction
下载PDF
Microstructural characterization of Inconel 718 alloy after pulsed laser surface treatment at different powers 被引量:2
10
作者 Lin-jiang CHAI Shan-shan YUAN +4 位作者 Wei-jiu HUANG Xu-sheng YANG Fang-jun WANG Dong-zhe WANG Jun-jun WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1530-1537,共8页
An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatte... An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening. 展开更多
关键词 Inconel 718 alloy grain boundaries pulsed laser surface treatment electron backscatter diffraction harchless
下载PDF
Microstructure comparison of ZK60 alloy under casting,twin roll casting and hot compression 被引量:3
11
作者 王守仁 王敏 +1 位作者 KANG Suk-bong CHO Jae-hyung 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期763-768,共6页
The microstructures of ZK60 alloy under conventional direct as-casting (DC),twin roll casting (TRC) and twin roll casting followed by hot compression (TRC-HC) were analyzed by optical morphology (OM),electron backscat... The microstructures of ZK60 alloy under conventional direct as-casting (DC),twin roll casting (TRC) and twin roll casting followed by hot compression (TRC-HC) were analyzed by optical morphology (OM),electron backscatter diffraction (EBSD) and X-ray diffraction (XRD).The deformation condition of hot compression is 350 ℃,0.1 s?1.The microstructural evolution under TRC-HC deformation followed by annealing at different temperatures and time was discussed.The results show that TRC provides more modified microstructure compared with DC.Twins are found in TRC processing;dynamic recrystallization (DRX),shear bands and twins are found in TRC-HC.A short annealing time has little effect on hardness,while during a long time annealing,it is found that low annealing temperatures increase the micro-hardness and high temperature decreases it. 展开更多
关键词 microstructural evolution ANNEAL dynamic recrystallization static recrystallization twin-roll casting hot compression magnesium alloy ZK60
下载PDF
Characterization of microstructure and strain response in Ti-6Al-4V plasma welding deposited material by combined EBSD and in-situ tensile test 被引量:2
12
作者 Martin BORLAUG MATHISEN Lars ERIKSEN +2 位作者 Yingda YU Ola JENSRUD Jarle HJELEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3929-3943,共15页
Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of col... Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of columnar remnants of directionally solidifiedβ-grains, with interior inhabited by colonies of finerα-plate structures, were found in samples produced by layered plasma welding of Ti-6Al-4V alloy. The application of in-situ tensile tests combined with rapid offline electron backscatter diffraction (EBSD) analysis provides a powerful tool for understanding and drawing qualitative correlations between microstructural features and deformation characteristics. Non-uniform deformation occurs due to a strong variation in strain response between colonies and across columnar grain boundaries. Prismatic and basal slip systems are active, with the prismatic systems contributing to the most severe deformation through coarse and widely spaced slip lines. Certain colonies behave as microstructural units, with easy slip transmission across the entire colony. Other regions exhibit significant deformation mismatch, with local build-up of strain gradients and stress concentration. The segmentation occurs due to the growth morphology and variant constraints imposed by the columnar solidification structures through orientation relationships, interface alignment and preferred growth directions. Tensile tests perpendicular to columnar structures reveal deformation localization at columnar grain boundaries. In this work connections are made between the theoretical macro- and microstructural growth mechanisms and the observed microstructure of the Ti-6Al-4V alloy, which in turn is linked to observations during in-situ tensile tests. 展开更多
关键词 Ti-6Al-4V alloy additive layer manufacturing electron backscatter diffraction in-situ tensile test plasma arc welding MICROSTRUCTURE plastic deformation
下载PDF
Evolution of microstructure and texture of AZ61 Mg alloy during net-shape pressing of extruded perform 被引量:1
13
作者 曹凤红 龙思远 +2 位作者 曹韩学 蒲怡冰 Gerald S.COLE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期561-566,共6页
The micro orientation theological behavior of AZ61 Mg alloy during net-shape forming of tensile specimens via close-die pressing of extruded preformed and the effect of the press deformation rate on the microstructure... The micro orientation theological behavior of AZ61 Mg alloy during net-shape forming of tensile specimens via close-die pressing of extruded preformed and the effect of the press deformation rate on the microstructure characteristics were characterized with electron back-scattering diffraction(EBSD)orientation imaging microscopy and metallography.The results indicate that the intensity distribution of basal{0001}<1010>texture on the cross-section of the extruded perform is uniform and parallel to the extrusion direction.Subjected to pressing in extrusion direction,deformation shear stress leads to grain rotation and basal texture {0001}<1010>deviation from the extrusion direction,spreading in the direction perpendicular to pressing direction.The texture intensity increases with the press deformation rate and reaches its peak value at 50%,which is considerably lower than the value reached in extrusion deformation.Then,the texture intensity decreases with the press deformation rate reversely. 展开更多
关键词 AZ61 magnesium alloy EXTRUSION PRESSING microstructure texture
下载PDF
Grain boundary effects on spall behavior of high purity copper cylinder under sweeping detonation
14
作者 YANG Yang HUANG Jun-yi +2 位作者 WANG Hai-min CHEN Ji-xiong GUO Zhao-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1107-1117,共11页
A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was ... A series of sweeping detonation experiments were conducted to study the grain boundary effects during the primary spallation of high-purity copper cylinder.The free surface velocity profile of the shocked samples was measured by Doppler pins systems.The soft-recovered samples were characterized by optical and electron backscatter diffraction microscopy,and the effects of microstructures like grain boundaries,and crystal orientation on spall behavior were investigated.The results indicated that the critical stress of deformation twinning in cylindrical copper increased.The nucleation sites of spallation damage were determined by the joint influence of the grain orientation(Taylor factor)and the angle between grain boundaries and radial impact-stress direction.Voids were prone to nucleating at the grain boundaries perpendicular to the radial impact-stress direction.Nevertheless,the number of voids nucleated at boundaries was relatively different from the results obtained from the plate impact experiment and plate sweeping detonation experiment,which is a result of the curvature that existed in the cylindrical copper and the obliquity of the impact-stress direction during sweeping detonation loading. 展开更多
关键词 sweeping detonation high purity copper cylinder SPALLATION microstructure electron backscatter diffraction
下载PDF
Microstructural evaluation of Hastelloy-X transient liquid phase bonded joints:Effects of filler metal thickness and holding time
15
作者 A.MALEKAN S.E.MIRSALEHI +2 位作者 M.FARVIZI N.SAITO K.NAKASHIMA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1548-1558,共11页
Transient liquid phase(TLP)bonding was investigated in Hastelloy-X samples with different filler metal thicknesses(20,35,50,65,and 100μm)and holding time(5,20,80,320,and 640 min)to obtain optimum bonding parameters.M... Transient liquid phase(TLP)bonding was investigated in Hastelloy-X samples with different filler metal thicknesses(20,35,50,65,and 100μm)and holding time(5,20,80,320,and 640 min)to obtain optimum bonding parameters.Microstructural evaluations using electron probe microanalysis(EPMA)and electron backscattered diffraction(EBSD)show that the central eutectic phases present in the athermally solidified zone(ASZ)are Ni_(3)B,Ni_(2)Si,and CrB,and the precipitates formed in the diffusion-affected zone(DAZ)are MoB,CrB_(2),and Mo_(2)B_(5).According to the results,decreasing the filler thickness as well as increasing the holding time helps realize the completion of isothermal solidification and reduction in the density of precipitates in the DAZ,leading to a joint with more uniform properties.Diffusion of boron and silicon to longer distances with increasing holding time causes the removal of Cr-rich borides in the DAZ and the formation of Mo-rich silicide at the joint interface.Decrease in hardness of ASZ and DAZ due to the elimination of brittle phases in these zones during long holding time causes more uniform hardness distribution in the joint area.The best results are obtained for the sample joined with the 35μm-thick filler metal for 640 min holding time. 展开更多
关键词 Hastelloy-X transient liquid phase(TLP)bonding microstructure filler metal electron probe microanalysis(EPMA) electron backscattered diffraction(EBSD)
下载PDF
Effect of asymmetric rolling on mechanical characteristics,texture and misorientations in ferritic steel
16
作者 Wrofiski Sebastian Wierzbanowski Krzysztof +2 位作者 Bacroix Brigitte Chauveau Thierry Wrobel Mirostaw 《Journal of Central South University》 SCIE EI CAS 2013年第6期1443-1455,共13页
The mechanical and microstructural properties as well as crystallographic textures of asymmetrically rolled low carbon steel were studied.The modelling of plastic deformation was carried out in two scales:in the macro... The mechanical and microstructural properties as well as crystallographic textures of asymmetrically rolled low carbon steel were studied.The modelling of plastic deformation was carried out in two scales:in the macro-scale,using the finite elements method,and in the crystallographic scale,using the polycrystalline deformation model.The internal stress distribution in the rolling gap was calculated using the finite elements method and these stresses were then applied to the polycrystalline elasto-plastic deformation model.Selected mechanical properties,namely residual stress distribution,deformation work,applied force and torques,and bend amplitude,were calculated.The diffraction measurements,X-ray and electron backscatter diffraction,enabled the examination of texture heterogeneity and selected microstructure characteristics.The predicted textures agree well with those determined experimentally.The plastic anisotropy of cold rolled ferritic steel samples,connected with texture,was expressed by Lankford coefficient. 展开更多
关键词 asymmetric rolling crystallographic texture residual stress deformation model finite elements method DIFFRACTION
下载PDF
Microstructure Evolution at Different Cooling Rates of Low Carbon Microalloyed Steels
17
作者 Elena Brandaleze Matias Ramirez Martina Avalos 《Journal of Chemistry and Chemical Engineering》 2017年第1期22-29,共8页
In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical... In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical properties such as high formability, high toughness and adequate strength. For this reason it is relevant to identify and determine the volume fraction of the ferrite, bainite and martensite present in the structure. The microalloying elements: V, Nb and Ti promote carbides precipitation during cooling. The precipitates control the grain size refinement during hot rolling process and the mechanical properties of the steel. In this sense it is necessary to increase the knowledge on the microstructure evolution at different cooling rates. In this paper, the results obtained on two low carbon microalloyed steels (with C contents between 0.11%-0.06%) are reported. An integrated methodology including dilatometry in combination with microscopy techniques was applied. By EBSD (Electron Backscatter Diffraction) technique and microhardness measurements, the structural study was completed. Through a thermodynamic simulation using Fact Sage the type of precipitates in the studied steels structure at the temperature range between 950 ℃ and 450 ℃, were predicted. The information on the evolution of the steel structure at rolling process conditions is relevant to consider changes in processing conditions. 展开更多
关键词 Low carbon steels dilatometry cooling curves phases transformation precipitates.
下载PDF
Effect of direct quenching on microstructure and mechanical properties of medium-carbon Nb-bearing steel 被引量:7
18
作者 Ying-li ZHAO Jie SHI +2 位作者 Wen-quan CAO Mao-qiu WANG Gang XIE 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第10期776-781,共6页
The influence of direct quenching (DQ) on microstructure and mechanical properties of 0.19C-1.7Si-1.0 Mn-0.05Nb steel was studied. The microstructure and mechanical properties of reheat quenched and tempered (RQ&T... The influence of direct quenching (DQ) on microstructure and mechanical properties of 0.19C-1.7Si-1.0 Mn-0.05Nb steel was studied. The microstructure and mechanical properties of reheat quenched and tempered (RQ&T) steel plate were compared with those of direct quenched and tempered (DQ&T) steel plates which were hot rolled at different finish rolling tem-peratures (1173 K and 1123 K), i.e., recrystallization-controlled-rolled direct-quenched (RCR&DQ) and controlled-rolled direct-quenched (CR&DQ), respectively. The strengths generally increased in the following order: RQ&T<RCR&DQ&T< CR&DQ&T. Strength differences between the CR&DQ&T and RQ&T conditions as high as 14% were observed at the tempered temperature of 573 K. The optical microscopy of the CR&DQ&T steel showed deformed grains elongated along the rolling direction, while complete equiaxed grains were visible in RQ&T and RCR&DQ&T steels. Transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) of the DQ steels showed smaller block width and higher density of dislocations. Inheritance of austenite deformation substructure by the martensite and differences in martensite block width were ruled out as major causes for the strength differences between DQ and RQ steels. 展开更多
关键词 Direct quenching (DQ) BLOCK Mechanical properties Electron backscattering diffraction (EBSD) Nb steel
原文传递
Evolution of microstructure and texture of cold-drawn polycrystalline Ag with low stacking fault energy 被引量:4
19
作者 MA XiaoGuang CHEN Jian +1 位作者 CHEN Zheng YAN Wen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第7期1146-1153,共8页
The evolution of microstructure and texture for drawn polycrystalline Ag was investigated by transmission electron microscopy and electron backscattering diffraction.The results show that there are deformation twins a... The evolution of microstructure and texture for drawn polycrystalline Ag was investigated by transmission electron microscopy and electron backscattering diffraction.The results show that there are deformation twins and some un-tangled discrete dislocations at low strains.When the strain is increased to 0.58,a lot of high density dislocation walls and microbands come into being.At the same time,some twins lose the twinning relationship of 60°<111>.At a strain of 0.94,both dislocation boundaries and twin boundaries will rotate to the axis direction of wires and the shear bands start to appear.When the strain is higher than 1.96,most of the boundaries are parallel to the drawn direction.Texture analysis indicates that with the strain increasing,the volume fraction of complex texture component decreases,but<111>and<100>texture components increase.However,the variation in the volume fraction of each texture component as strains is not evident when the strains are higher than 0.58.For polycrystalline Ag with low stacking fault energy,complex texture components are easily formed. 展开更多
关键词 polycrystalline Ag cold-drawn deformation MICROSTRUCTURE deformation twinning stacking fault energy
原文传递
Microstructure and texture evolution of cold drawing <110> single crystal copper 被引量:5
20
作者 CHEN Jian YAN Wen +3 位作者 LI Bing MA XiaoGuang DU XinZhi FAN XinHui 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第6期1551-1559,共9页
By means of electron backscattering diffraction and transmission electron microscopy the microstructure and texture of drawn single crystal copper with initial orientation (110) parallel to axial direction have been... By means of electron backscattering diffraction and transmission electron microscopy the microstructure and texture of drawn single crystal copper with initial orientation (110) parallel to axial direction have been investigated in the present work. In or- der to analyze the effect of initial orientation on microstructure and texture of drawn copper, the results of the drawn (110) sin- gle crystal copper wires have been compared with (100) and (111) single crystal copper wires. It is found that the grain subdi- vision of (110) single crystal is more evident than that of (100) and (111), and the textures consisting of (111) and (100) abruptly form in the drawn (110) single crystal. At high strains, due to shear strain, the distribution of fiber textures is imho- mogenous along the radial direction of drawn (110) single crystal copper wires. (100) is near the surface and (111) is at the center. The microstructure results of drawn (110) single crystal show that at low strains, it can be characterized as two kinds of geometrically necessary boundaries with noncrystalline character. At medium strains, S bands can be observed. At high strains, lamellar boundaries form. Mean misofientation and average spacing of dislocation boundary are larger in drawn (110) single crystal, as compared with (111) and (100). In drawn (110) single crystal with high strains, the bimodal distribution forms at lower strains than in drawn (100) single crystal, which is because the dislocation boundaries with high angle are contributed by not only the boundary between (111) and (100) fiber textures but also the boundary in (111) or (100) texture. 展开更多
关键词 single crystal copper cold drawing TEXTURE MICROSTRUCTURE
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部