Autophagy or self-digestion of cells is activated upon various stressful stimuli and has been found to be a survival and drug resistance pathway in cancer.However,genetic studies support that autophagy can act as a tu...Autophagy or self-digestion of cells is activated upon various stressful stimuli and has been found to be a survival and drug resistance pathway in cancer.However,genetic studies support that autophagy can act as a tumor suppressor.Furthermore,defective autophagy is implicated in tumorigenesis,as well.The precise impact of autophagy on malignant transformation has not yet been clarified,but recent data suggest that this complex process is mainly directed by cell types,phases,genetic background and microenvironment.Relation of autophagy to anticancer immune responses may indicate a novel aspect in cancer chemotherapy.展开更多
Based on seismic and drilling data, we calculated tectonic subsidence amounts and rates of the Wan'an Basin by backstripping. The genetic mechanism and syn-rifting process of the basin were analyzed in combination...Based on seismic and drilling data, we calculated tectonic subsidence amounts and rates of the Wan'an Basin by backstripping. The genetic mechanism and syn-rifting process of the basin were analyzed in combination with the regional geological setting. The results reveal that the basin syn-rifted in the Eocene and early Miocene under the control of the dextral strike-slip Wan'an Fault Zone. The transtensional/ extentional stresses along this fault zone may be attributed to seafloor spreading of the South China Sea (SCS) in multiple episodes. Extensive basal faults and some small initial rifts in the early Paleogene can be related to southeastward extrusion and clockwise rotation of the Indochina Block. During the Oligocene, the nearly N-S directed spreading of the SCS derived the transtensional stresses in a roughly NW-SE orientation. The basin subsided rapidly in the middle and north to form two major subsidence centers. In the early Miocene, the SCS spread again in a nearly NW-SE direction, resulting in rapid subsidence in the southern basin continuous extending until the period ~16.3 Ma.展开更多
文摘Autophagy or self-digestion of cells is activated upon various stressful stimuli and has been found to be a survival and drug resistance pathway in cancer.However,genetic studies support that autophagy can act as a tumor suppressor.Furthermore,defective autophagy is implicated in tumorigenesis,as well.The precise impact of autophagy on malignant transformation has not yet been clarified,but recent data suggest that this complex process is mainly directed by cell types,phases,genetic background and microenvironment.Relation of autophagy to anticancer immune responses may indicate a novel aspect in cancer chemotherapy.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2009CB219406)the National Natural Science Foundation of China (No. 40930845)
文摘Based on seismic and drilling data, we calculated tectonic subsidence amounts and rates of the Wan'an Basin by backstripping. The genetic mechanism and syn-rifting process of the basin were analyzed in combination with the regional geological setting. The results reveal that the basin syn-rifted in the Eocene and early Miocene under the control of the dextral strike-slip Wan'an Fault Zone. The transtensional/ extentional stresses along this fault zone may be attributed to seafloor spreading of the South China Sea (SCS) in multiple episodes. Extensive basal faults and some small initial rifts in the early Paleogene can be related to southeastward extrusion and clockwise rotation of the Indochina Block. During the Oligocene, the nearly N-S directed spreading of the SCS derived the transtensional stresses in a roughly NW-SE orientation. The basin subsided rapidly in the middle and north to form two major subsidence centers. In the early Miocene, the SCS spread again in a nearly NW-SE direction, resulting in rapid subsidence in the southern basin continuous extending until the period ~16.3 Ma.