期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于Mask R-CNN的超声图像中胎儿头围测量方法 被引量:2
1
作者 李宗桂 张俊华 梅礼晔 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第1期12-18,共7页
胎儿头围是产前超声检查中评价胎儿生长发育最重要的生物特征之一,但手工测量耗时费力且存在操作者的误差。对此,根据超声图像中胎儿头部接近椭圆形状的特征,提出头围测量损失函数。在Mask R-CNN的分割分支后,利用Elli Fit算法对分割掩... 胎儿头围是产前超声检查中评价胎儿生长发育最重要的生物特征之一,但手工测量耗时费力且存在操作者的误差。对此,根据超声图像中胎儿头部接近椭圆形状的特征,提出头围测量损失函数。在Mask R-CNN的分割分支后,利用Elli Fit算法对分割掩膜进行椭圆拟合,用Ramanujan公式计算拟合椭圆周长作为头围测量值,将头围真实值和测量值的均方误差作为头围测量损失函数加入原损失函数,使模型训练过程与测量任务紧密相关。对190幅胎儿头部超声图像进行测试,Dice系数为96.89%±1.01%,测量误差为(0.33±1.54) mm,平均处理一幅超声图像的时间为0.33 s。与传统手工测量方法或原模型相比,所提出的方法在速度上提高1.13~16.87 s,在精度上提高0.21~1.68 mm。结果表明,改进的Mask R-CNN可以提高医生测量胎儿头围的效率,能够满足临床需求。 展开更多
关键词 超声图像 Mask R-CNN 椭圆拟合 胎儿头围测量 损失函数
下载PDF
基于融合边界框高置信度区域信息的超声胎儿头围测量算法 被引量:1
2
作者 汪金婷 杨丰 陈琪 《自动化与信息工程》 2021年第1期7-11,共5页
为有效克服胎儿头部超声图像中存在的干扰问题,实现对胎儿头围的精确测量,提出一种基于融合边界框高置信度区域信息的超声胎儿头围测量算法。首先,通过U-Net分割网络提取胎儿头部图像感兴趣区域;其次,利用YOLOv3检测网络获取胎儿头部边... 为有效克服胎儿头部超声图像中存在的干扰问题,实现对胎儿头围的精确测量,提出一种基于融合边界框高置信度区域信息的超声胎儿头围测量算法。首先,通过U-Net分割网络提取胎儿头部图像感兴趣区域;其次,利用YOLOv3检测网络获取胎儿头部边界框,结合边界框高置信度区域信息,筛选头部感兴趣区域高置信度边缘点;最后,采用直接最小二乘法对高置信度边缘点进行椭圆拟合,计算胎儿头围结果。实验结果表明:该算法可有效克服图像质量的干扰,提高超声胎儿头围测量精度。 展开更多
关键词 胎儿头围测量 超声图像 高置信度区域筛选算法 U-Net YOLOv3
下载PDF
超声图像中胎儿头围的自动测量 被引量:7
3
作者 李璟 倪东 +4 位作者 李胜利 韩笑 尹晓浪 汪天富 陈思平 《深圳大学学报(理工版)》 EI CAS 北大核心 2014年第5期455-463,共9页
提出一种超声图像中胎儿头围自动测量的新方法.利用机器学习的随机森林(random forests,RFs)算法自动检测感兴趣区域(region of interest,ROI),通过图像局部相位对称(phase symmetry,PS)检测头围边缘,使用非迭代椭圆拟合算法拟合出头围... 提出一种超声图像中胎儿头围自动测量的新方法.利用机器学习的随机森林(random forests,RFs)算法自动检测感兴趣区域(region of interest,ROI),通过图像局部相位对称(phase symmetry,PS)检测头围边缘,使用非迭代椭圆拟合算法拟合出头围椭圆.与医生手动拟合测量的结果对比,145个头像的平均相对偏差为-3.86 mm,表明该方法可以鲁棒的自动检测胎儿头围. 展开更多
关键词 图像处理 超声图像处理 相位对称性 边缘检测 椭圆拟合 随机森林算法 胎儿头围测量
下载PDF
融合型UNet++网络的超声胎儿头部边缘检测 被引量:13
4
作者 邢妍妍 杨丰 +1 位作者 唐宇姣 张利云 《中国图象图形学报》 CSCD 北大核心 2020年第2期366-377,共12页
目的超声胎儿头部边缘检测是胎儿头围测量的关键步骤,因胎儿头部超声图像边界模糊、超声声影造成图像中胎儿颅骨部分缺失、羊水及子宫壁形成与胎儿头部纹理及灰度相似的结构等因素干扰,给超声胎儿头部边缘检测及头围测量带来一定的难度... 目的超声胎儿头部边缘检测是胎儿头围测量的关键步骤,因胎儿头部超声图像边界模糊、超声声影造成图像中胎儿颅骨部分缺失、羊水及子宫壁形成与胎儿头部纹理及灰度相似的结构等因素干扰,给超声胎儿头部边缘检测及头围测量带来一定的难度。本文提出一种基于端到端的神经网络超声图像分割方法,用于胎儿头部边缘检测。方法以UNet++神经网络结构为基础,结合UNet++最后一层特征,构成融合型UNet++网络。训练过程中,为缓解模型训练过拟合问题,在每一卷积层后接一个空间dropout层。具体思路是通过融合型UNet++深度神经网络提取超声胎儿头部图像特征,通过胎儿头部区域概率图预测,输出胎儿头部语义分割的感兴趣区域。进一步获取胎儿的头部边缘关键点信息,并采用边缘曲线拟合方法拟合边缘,最终测量出胎儿头围大小。结果针对现有2维超声胎儿头围自动测量公开数据集HC18,以Dice系数、Hausdorff距离(HD)、头围绝对差值(AD)等指标评估本文模型性能,结果Dice系数为98.06%,HD距离为1.21±0.69 mm,头围测量AD为1.84±1.73 mm。在妊娠中期测试数据中,Dice系数为98.24%,HD距离为1.15±0.59 mm,头围测量AD为1.76±1.55 mm。在生物医学图像分析平台Grand Challenge上HC18数据集已提交结果中,融合型UNet++的Dice系数排在第3名,HD排在第2名,AD排在第10名。结论与经典超声胎儿头围测量方法及已有的机器学习方法应用研究相比,融合型UNet++能有效克服超声边界模糊、边缘缺失等干扰,精准分割出胎儿头部感兴趣区域,获取边缘关键点信息。与现有神经网络框架相比,融合型UNet++能充分利用上下文相关信息与局部定位功能,在妊娠中期的头围测量中,本文方法明显优于其他方法。 展开更多
关键词 医学图像分割 UNet++ 胎儿部边缘检测 胎儿头围测量 深度学习 超声图像
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部