The purpose of the study was to investigate the impact of rat cytomegalovirus (RCMV) infection on the development of the nervous system in rat embryos, and to evaluate the involvement of Wnt signaling pathway key mo...The purpose of the study was to investigate the impact of rat cytomegalovirus (RCMV) infection on the development of the nervous system in rat embryos, and to evaluate the involvement of Wnt signaling pathway key molecules and the downstream gene neurogenin 1 (Ngnl) in RCMV infected neural stem cells (NSCs). Infection and control groups were established, each containing 20 pregnant Wistar rats. Rats in the infection group were inoculated with RCMV by intraperitoneal injection on the first day of pregnancy. Rat E20 embryos were taken to evaluate the teratogenic rate. NSCs were isolated from El3 embryos, and maintained in vitro. We found: 1) Poor fetal development was found in the infection group with low survival and high malformation rates. 2) The proliferation and differentiation of NSCs were affected. In the infection group, NSCs proliferated more slowly and had a lower neurosphere formation rate than the control. The differentiation ratio from NSCs to neurons and glial cells was significantly different from that of the control, showed by immunofluorescenee staining. 3) Ngnl mRNA expression and the nuclear p-catenin protein level were significantly lower than the control on day 2 when NSCs differentiated. 4) The Morris water maze test was performed on 4-week pups, and the infected rats were found worse in learning and memory ability. In a summary, RCMV infection caused abnormalities in the rat embryonic nervous system, significantly inhibited NSC proliferation and differentiation, and inhibited the expression of key molecules in the Wnt/β-catenin signaling pathway so as to affect NSCs differentiation. This may be an important mechanism by which RCMV causes embryonic nervous system abnormalities.展开更多
The rat chimera is an important animal model for the study of complex human diseases. In the present study we evaluated the chimeric potential of rat inner cell masses (ICMs) and fetal neural stem (FNS) cells. In ...The rat chimera is an important animal model for the study of complex human diseases. In the present study we evaluated the chimeric potential of rat inner cell masses (ICMs) and fetal neural stem (FNS) cells. In result, three rat chimeras were produced by day 5 (D5) Sprague-Dawley (SD) blastocysts injected with ICMs derived from day 6 (D6) and D5 Dark Agouti (DA) blastocysts; four rat chimeras had been generated by D5 DA blastocyst injected with D5 SD ICMs. For the requirement of gene modification, cultured rat inner cell mass cells were assessed to produce chimeras, but no chimeras were generated from injected embryos. The potential to generate chimeras from rFNS and transfected rFNS cells were tested, but no chimeric pups were produced. Only 2 of 41 fetuses derived from D5 DA blastocyst injection with SD LacZ transfected rFNS cells showed very low number of LacZ positive cells in the section. These results indicate that DA and SD rat ICMs arc able to contribute to chimeras, but their potential decreases significantly after culture in vitro (P〈0.05), and rFNS cells only have the potential to contribute to early fetal development.展开更多
In vitro, mouse embryonic stem (ES) cells can differentiate into many somatic cell types, including neurons and glial cells. When cultured in serum-free medium, ES cells convert spontaneously and efficiently to a ne...In vitro, mouse embryonic stem (ES) cells can differentiate into many somatic cell types, including neurons and glial cells. When cultured in serum-free medium, ES cells convert spontaneously and efficiently to a neural fate. Previous studies have shown that the neural conversion of mouse ES cells includes both the participation of neural-specific transcription factors and the regulation of epigenetic modifications. However, the intracellular mechanism underlying this intrinsic transition still re- mains to be further elucidated. Herein, we describe a long intergenic non-coding RNA, LincRNA1230, which participates in the regulation of the neural lineage specification of mouse ES cells. The ectopic forced expression of LincRNAI230 dramatically inhibited mouse ES cells from adopting a neural cell fate, while LincRNA1230 knockdown promoted the conversion of mouse ES cells towards neural progenitors. Mechanistic studies have shown that LincRNA1230 inhibits the activation of early neural genes, such as Pax6 and Soxl, through the modulation of bivalent modifications (tri-methylation of histone3 lysine4 and his- tone3 lysine27) at the promoters of these genes. The interaction of LincRNA1230 with Wdr5 blocked the localization of Wdr5 at the promoters of early neural genes, thereby inhibiting the enrichment of H3K4me3 modifications at these loci. Collectively, these findings revealed a crucial role for LincRNA1230 in the regulation of the neural differentiation of mouse ES cells.展开更多
基金Shandong Province High-level Talent of Health 1020 Project Fund(No.2008-1)Science and Technology Creative Research of Weifang Medical University(No.K11TS1010)+1 种基金A Project of Shandong Province Higher Educational Science and Technology Program(No.J12LK04)National Natural Science Foundation of China(30900775)
文摘The purpose of the study was to investigate the impact of rat cytomegalovirus (RCMV) infection on the development of the nervous system in rat embryos, and to evaluate the involvement of Wnt signaling pathway key molecules and the downstream gene neurogenin 1 (Ngnl) in RCMV infected neural stem cells (NSCs). Infection and control groups were established, each containing 20 pregnant Wistar rats. Rats in the infection group were inoculated with RCMV by intraperitoneal injection on the first day of pregnancy. Rat E20 embryos were taken to evaluate the teratogenic rate. NSCs were isolated from El3 embryos, and maintained in vitro. We found: 1) Poor fetal development was found in the infection group with low survival and high malformation rates. 2) The proliferation and differentiation of NSCs were affected. In the infection group, NSCs proliferated more slowly and had a lower neurosphere formation rate than the control. The differentiation ratio from NSCs to neurons and glial cells was significantly different from that of the control, showed by immunofluorescenee staining. 3) Ngnl mRNA expression and the nuclear p-catenin protein level were significantly lower than the control on day 2 when NSCs differentiated. 4) The Morris water maze test was performed on 4-week pups, and the infected rats were found worse in learning and memory ability. In a summary, RCMV infection caused abnormalities in the rat embryonic nervous system, significantly inhibited NSC proliferation and differentiation, and inhibited the expression of key molecules in the Wnt/β-catenin signaling pathway so as to affect NSCs differentiation. This may be an important mechanism by which RCMV causes embryonic nervous system abnormalities.
文摘The rat chimera is an important animal model for the study of complex human diseases. In the present study we evaluated the chimeric potential of rat inner cell masses (ICMs) and fetal neural stem (FNS) cells. In result, three rat chimeras were produced by day 5 (D5) Sprague-Dawley (SD) blastocysts injected with ICMs derived from day 6 (D6) and D5 Dark Agouti (DA) blastocysts; four rat chimeras had been generated by D5 DA blastocyst injected with D5 SD ICMs. For the requirement of gene modification, cultured rat inner cell mass cells were assessed to produce chimeras, but no chimeras were generated from injected embryos. The potential to generate chimeras from rFNS and transfected rFNS cells were tested, but no chimeric pups were produced. Only 2 of 41 fetuses derived from D5 DA blastocyst injection with SD LacZ transfected rFNS cells showed very low number of LacZ positive cells in the section. These results indicate that DA and SD rat ICMs arc able to contribute to chimeras, but their potential decreases significantly after culture in vitro (P〈0.05), and rFNS cells only have the potential to contribute to early fetal development.
基金supported by National Natural Science Foundation of China (81530042, 31571529, 31210103905, 31571519, 31571390, 31371510, 31301208, 31471250, 31401257)the Ministry of Science and Technology (2012CB966603, 2013CB967600, 2013CB967401)+2 种基金Science and Technology Commission of Shanghai Municipality (15JC1403200, 15JC1403201)Shanghai Rising-Star Program (14QA1403900)the Fundamental Research Funds for the Central Universities (2000219099)
文摘In vitro, mouse embryonic stem (ES) cells can differentiate into many somatic cell types, including neurons and glial cells. When cultured in serum-free medium, ES cells convert spontaneously and efficiently to a neural fate. Previous studies have shown that the neural conversion of mouse ES cells includes both the participation of neural-specific transcription factors and the regulation of epigenetic modifications. However, the intracellular mechanism underlying this intrinsic transition still re- mains to be further elucidated. Herein, we describe a long intergenic non-coding RNA, LincRNA1230, which participates in the regulation of the neural lineage specification of mouse ES cells. The ectopic forced expression of LincRNAI230 dramatically inhibited mouse ES cells from adopting a neural cell fate, while LincRNA1230 knockdown promoted the conversion of mouse ES cells towards neural progenitors. Mechanistic studies have shown that LincRNA1230 inhibits the activation of early neural genes, such as Pax6 and Soxl, through the modulation of bivalent modifications (tri-methylation of histone3 lysine4 and his- tone3 lysine27) at the promoters of these genes. The interaction of LincRNA1230 with Wdr5 blocked the localization of Wdr5 at the promoters of early neural genes, thereby inhibiting the enrichment of H3K4me3 modifications at these loci. Collectively, these findings revealed a crucial role for LincRNA1230 in the regulation of the neural differentiation of mouse ES cells.