White, translucent, glossy mucilaginous callus was initiated from the mature zygotic embryos explants on callus induction medium with 2,4-D, BA, and kinetin in the 3-9th week of culture. This type of callus induction ...White, translucent, glossy mucilaginous callus was initiated from the mature zygotic embryos explants on callus induction medium with 2,4-D, BA, and kinetin in the 3-9th week of culture. This type of callus induction occurred at a lower fre-quency with either a-naphthaleneacetic acid (NAA) or IBA (both 8 mg/L). White, translucent, glossy mucilaginous callus was embryogenic and mainly developed from the cotyledons of the mature zygotic embryo. Somatic embryos were formed on dif-ferentiation medium. Desiccation tolerance can be induced by culturing somatic embryos of loblolly pine (Pinus taeda L.) on medium supplemented with 50 mm abscisic acid (ABA) and/or 8.5% polyethylene glycol (PEG6000). Scanning electron micros-copy of desiccated somatic embryos showed that the size and external morphology of the desiccation tolerant somatic embryos recovered to the pre-desiccation state within 24-36 h, whereas the sensitive somatic embryos did not recover and remained shriveled, after the desiccated somatic embryos had been rehydrated. Peroxidase activity of desiccated somatic embryos in-creased sharply after 3 days of desiccation treatment, and desiccation tolerant somatic embryos had higher peroxidase activity compared to sensitive somatic embryos. Higher peroxidase activity of desiccation tolerant somatic embryos was possibly ad-vantage of catalyzing the reduction of H2O2 which was produced by drought stress, and protecting somatic embryos from oxida-tive damage.展开更多
Mexico is a large producer of table grape (Vitis vinifera L.) and therefore it is important to develop protocols to store the grape varieties germplasm. The objective of the present work was to design a protocol for...Mexico is a large producer of table grape (Vitis vinifera L.) and therefore it is important to develop protocols to store the grape varieties germplasm. The objective of the present work was to design a protocol for the cryopreservation by vitrification of zygotic embryos of V. vinifera cv. "Red Globe" and evaluate possible epigenetics changes. The plant vitrification solution 2 (PVS2) was utilized before the utilization of liquid nitrogen (LN). The effect of this protocol on embryo viability was tested by the triphenyl-tetrazolium chloride solution, as well as by the in vitro development of grape embryos into plantlet. A cDNA expression library of grape zygotic embryos was created to isolate expressed sequence tags of several DNA methyltrasferases. Gene expression of domains rearranged methyltransferase type 1 (DMR1) and DNA (cytosine-5)-methyltransferase 1 (MET1-2) isozymes was analyzed by quantitative reverse transcriptase PCR. The optimal conditions for vitrification were 10 min in 50% PVS2, followed by I0 min in 100% PVS2. Under these conditions, about 30% of plantlet was obtained from embryos after cryopreservation. It was recorded a reduction in the MET1-2 gene expression, which plays a role in the maintenance of DNA methylation. It is possible to cryopreserve viable grape zygotic embryos, although the treatment seems to induce alterations in the normal DNA methylation pattern of the zygotic embryo genome.展开更多
Although Activin/Nodal signaling regulates pluripotency of human embryonic stem (ES) cells, how this signaling acts in mouse ES cells remains largely unclear. To investigate this, we confirmed that mouse ES cells po...Although Activin/Nodal signaling regulates pluripotency of human embryonic stem (ES) cells, how this signaling acts in mouse ES cells remains largely unclear. To investigate this, we confirmed that mouse ES cells possess active Smad2-mediated Activin/Nodal signaling and found that Smad2-mediated Activin/Nodal signaling is dispensable for self-renewal maintenance but is required for proper differentiation toward the mesendoderm lineage. To gain insights into the underlying mechanisms, Smad2-associated genes were identified by genome-wide chromatin immu- noprecipitation-chip analysis. The results showed that there is a transcriptional correlation between Smad2 binding and Activin/Nodal signaling modulation, and that the development-related genes were enriched among the Smad2- bound targets. We further identified Tapbp as a key player in mesendoderm differentiation of mouse ES cells acting downstream of the Activin/Nodal-Smad2 pathway. Taken together, our findings suggest that Smad2-mediated Activin/Nodal signaling orchestrates mesendoderm lineage commitment of mouse ES cells through direct modulation of corresponding developmental regulator expression.展开更多
Through water cultivating method, the dynamic changes of xylanase activity in seed, root and plumule of wheat with different As (III) concentration treatment were studied. The results indicated that the order of ave...Through water cultivating method, the dynamic changes of xylanase activity in seed, root and plumule of wheat with different As (III) concentration treatment were studied. The results indicated that the order of average xylanase activity was seed〉plumule〉root. With the increasing concentration of As (III), the xylanase activity elevated first then dropped in seed, but it descended first then ascended in root and plumule. As the sampling time prolonged, the xylanase activity of seeds climbed first then dropped on the four as (III) concentration, the same trend also appeared in pulume, as the as (Ill) concentration went up, the xylanase activity moved up simultaneity. Semi-quantity Reverse Transcription Polymerase Chain Reaction was used in the study, the results indicated that, the xylanase gene began to express at 132 h on 0 mg/L As (III) concentration and at 120h on other concentration in the leaves of wheat.展开更多
Aurora kinases have become a hot topic for research as they have been found to play an important role in various stages of mitotic cell division and to participate in malignant conversions of tumors. The participation...Aurora kinases have become a hot topic for research as they have been found to play an important role in various stages of mitotic cell division and to participate in malignant conversions of tumors. The participation of Aurora kinases in the regulation of oocyte meiosis has been recently reported, but their participation in mammalian early embryonic development remained unclear. The object of our study was to establish the spatio-temporal expression pattern of Aurora kinase B (AURKB) in mouse zygotes during the first cleavage, to reveal its functions in the early development of mouse zygotes, and to define the involvement of AURKB in mitogen-activated protein kinase (MAPK) signaling. Our results showed that in mouse zygotes AURKB expression increased in G1 phase and peaked in M phase. AURKB protein distribution was found to be in association with nuclei and distributed throughout the cytoplasm in a cell cycle-dependent manner. Functional disruption of AURKB resulted in abnormal division phenotypes or mitotic impairments. U0126, a specific mitogen-activated protein kinase kinase (MEK) inhibitor, caused significantly altered morphologies of early embryos together with a decrease in protein expression and kinase activity of AURKB. Our results indicated that the activity of AURKB was required for regulating multiple stages of mitotic progression in the early development of mouse zygotes and was correlated with the activation of the MAPK pathway.展开更多
文摘White, translucent, glossy mucilaginous callus was initiated from the mature zygotic embryos explants on callus induction medium with 2,4-D, BA, and kinetin in the 3-9th week of culture. This type of callus induction occurred at a lower fre-quency with either a-naphthaleneacetic acid (NAA) or IBA (both 8 mg/L). White, translucent, glossy mucilaginous callus was embryogenic and mainly developed from the cotyledons of the mature zygotic embryo. Somatic embryos were formed on dif-ferentiation medium. Desiccation tolerance can be induced by culturing somatic embryos of loblolly pine (Pinus taeda L.) on medium supplemented with 50 mm abscisic acid (ABA) and/or 8.5% polyethylene glycol (PEG6000). Scanning electron micros-copy of desiccated somatic embryos showed that the size and external morphology of the desiccation tolerant somatic embryos recovered to the pre-desiccation state within 24-36 h, whereas the sensitive somatic embryos did not recover and remained shriveled, after the desiccated somatic embryos had been rehydrated. Peroxidase activity of desiccated somatic embryos in-creased sharply after 3 days of desiccation treatment, and desiccation tolerant somatic embryos had higher peroxidase activity compared to sensitive somatic embryos. Higher peroxidase activity of desiccation tolerant somatic embryos was possibly ad-vantage of catalyzing the reduction of H2O2 which was produced by drought stress, and protecting somatic embryos from oxida-tive damage.
文摘Mexico is a large producer of table grape (Vitis vinifera L.) and therefore it is important to develop protocols to store the grape varieties germplasm. The objective of the present work was to design a protocol for the cryopreservation by vitrification of zygotic embryos of V. vinifera cv. "Red Globe" and evaluate possible epigenetics changes. The plant vitrification solution 2 (PVS2) was utilized before the utilization of liquid nitrogen (LN). The effect of this protocol on embryo viability was tested by the triphenyl-tetrazolium chloride solution, as well as by the in vitro development of grape embryos into plantlet. A cDNA expression library of grape zygotic embryos was created to isolate expressed sequence tags of several DNA methyltrasferases. Gene expression of domains rearranged methyltransferase type 1 (DMR1) and DNA (cytosine-5)-methyltransferase 1 (MET1-2) isozymes was analyzed by quantitative reverse transcriptase PCR. The optimal conditions for vitrification were 10 min in 50% PVS2, followed by I0 min in 100% PVS2. Under these conditions, about 30% of plantlet was obtained from embryos after cryopreservation. It was recorded a reduction in the MET1-2 gene expression, which plays a role in the maintenance of DNA methylation. It is possible to cryopreserve viable grape zygotic embryos, although the treatment seems to induce alterations in the normal DNA methylation pattern of the zygotic embryo genome.
基金Acknowledgments We thank Gaoyang Zhu for technical assistance. This work was supported by grants from the National Natural Science Foundation of China (30930050, 30921004), the 973 Program (2006CB943401, 2010CB833706) to YGC, and grants from the China National Science Foundation (Grant # 30890033, 30588001 and 30620120433), Chinese Ministry of Science and Technology(Grant # 2006CB910700) to JDH.
文摘Although Activin/Nodal signaling regulates pluripotency of human embryonic stem (ES) cells, how this signaling acts in mouse ES cells remains largely unclear. To investigate this, we confirmed that mouse ES cells possess active Smad2-mediated Activin/Nodal signaling and found that Smad2-mediated Activin/Nodal signaling is dispensable for self-renewal maintenance but is required for proper differentiation toward the mesendoderm lineage. To gain insights into the underlying mechanisms, Smad2-associated genes were identified by genome-wide chromatin immu- noprecipitation-chip analysis. The results showed that there is a transcriptional correlation between Smad2 binding and Activin/Nodal signaling modulation, and that the development-related genes were enriched among the Smad2- bound targets. We further identified Tapbp as a key player in mesendoderm differentiation of mouse ES cells acting downstream of the Activin/Nodal-Smad2 pathway. Taken together, our findings suggest that Smad2-mediated Activin/Nodal signaling orchestrates mesendoderm lineage commitment of mouse ES cells through direct modulation of corresponding developmental regulator expression.
文摘Through water cultivating method, the dynamic changes of xylanase activity in seed, root and plumule of wheat with different As (III) concentration treatment were studied. The results indicated that the order of average xylanase activity was seed〉plumule〉root. With the increasing concentration of As (III), the xylanase activity elevated first then dropped in seed, but it descended first then ascended in root and plumule. As the sampling time prolonged, the xylanase activity of seeds climbed first then dropped on the four as (III) concentration, the same trend also appeared in pulume, as the as (Ill) concentration went up, the xylanase activity moved up simultaneity. Semi-quantity Reverse Transcription Polymerase Chain Reaction was used in the study, the results indicated that, the xylanase gene began to express at 132 h on 0 mg/L As (III) concentration and at 120h on other concentration in the leaves of wheat.
基金supported by the National Natural Science Foundation of China (Grant No. 81070527)
文摘Aurora kinases have become a hot topic for research as they have been found to play an important role in various stages of mitotic cell division and to participate in malignant conversions of tumors. The participation of Aurora kinases in the regulation of oocyte meiosis has been recently reported, but their participation in mammalian early embryonic development remained unclear. The object of our study was to establish the spatio-temporal expression pattern of Aurora kinase B (AURKB) in mouse zygotes during the first cleavage, to reveal its functions in the early development of mouse zygotes, and to define the involvement of AURKB in mitogen-activated protein kinase (MAPK) signaling. Our results showed that in mouse zygotes AURKB expression increased in G1 phase and peaked in M phase. AURKB protein distribution was found to be in association with nuclei and distributed throughout the cytoplasm in a cell cycle-dependent manner. Functional disruption of AURKB resulted in abnormal division phenotypes or mitotic impairments. U0126, a specific mitogen-activated protein kinase kinase (MEK) inhibitor, caused significantly altered morphologies of early embryos together with a decrease in protein expression and kinase activity of AURKB. Our results indicated that the activity of AURKB was required for regulating multiple stages of mitotic progression in the early development of mouse zygotes and was correlated with the activation of the MAPK pathway.