We have examined the myogenic potential of human embryonic stem (hES) cells in a xeno-transplantation animal model. Here we show that precursors differentiated from hES cells can undergo myogenesis in an adult envir...We have examined the myogenic potential of human embryonic stem (hES) cells in a xeno-transplantation animal model. Here we show that precursors differentiated from hES cells can undergo myogenesis in an adult environment and give rise to a range of cell types in the myogenic lineage. This study provides direct evidences that hES cells can regenerate both muscle and satellite cells in vivo and are another promising cell type for treating muscle degenerative disorders in addition to other myogenic cell types.展开更多
Using embryonic myoblasts to research the formation and de-velopmental mechanisms of skeletal muscle is becoming a research hotspot. This study aimed to establish a method of isolation, culture and identification of m...Using embryonic myoblasts to research the formation and de-velopmental mechanisms of skeletal muscle is becoming a research hotspot. This study aimed to establish a method of isolation, culture and identification of my-oblasts in duck embryos. [Method] Pectoral and leg muscle samples were isolated from the embryos of Gaoyou duck at 13 d of hatching, then disassociated with col-lagenase and trypsin and purified via differential adhesion. The isolated cells were cultured in vitro and detected for the expression of Pax7 protein using immunofluo-rescence technique. [Result] Myoblasts were obtained successful y both from pectoral and leg muscles in duck embryos and these cells proliferated strongly and differen-tiated wel . Immunofluorescence staining showed that more than 95% cells could express Pax7 protein. [Conclusion] In summary, we report the successful establish-ment of a complete system for the isolation, purification, identification and culture of myoblasts from duck embryos.展开更多
文摘We have examined the myogenic potential of human embryonic stem (hES) cells in a xeno-transplantation animal model. Here we show that precursors differentiated from hES cells can undergo myogenesis in an adult environment and give rise to a range of cell types in the myogenic lineage. This study provides direct evidences that hES cells can regenerate both muscle and satellite cells in vivo and are another promising cell type for treating muscle degenerative disorders in addition to other myogenic cell types.
基金Supported by the National Natural Science Foundation of China(31172194)Science and Technology Support Program of Jiangsu Province(BE2014362)
文摘Using embryonic myoblasts to research the formation and de-velopmental mechanisms of skeletal muscle is becoming a research hotspot. This study aimed to establish a method of isolation, culture and identification of my-oblasts in duck embryos. [Method] Pectoral and leg muscle samples were isolated from the embryos of Gaoyou duck at 13 d of hatching, then disassociated with col-lagenase and trypsin and purified via differential adhesion. The isolated cells were cultured in vitro and detected for the expression of Pax7 protein using immunofluo-rescence technique. [Result] Myoblasts were obtained successful y both from pectoral and leg muscles in duck embryos and these cells proliferated strongly and differen-tiated wel . Immunofluorescence staining showed that more than 95% cells could express Pax7 protein. [Conclusion] In summary, we report the successful establish-ment of a complete system for the isolation, purification, identification and culture of myoblasts from duck embryos.