With the identification of more than a dozen novel Hermansky-Pudlak Syndrome (HPS) proteins in vesicle trafficking in higher eukaryotes, a new class of trafficking pathways has been described. It mainly consists of ...With the identification of more than a dozen novel Hermansky-Pudlak Syndrome (HPS) proteins in vesicle trafficking in higher eukaryotes, a new class of trafficking pathways has been described. It mainly consists of three newly-defined protein com- plexes, BLOC-l, -2, and -3. Compelling evidence indicates that these complexes together with two other well-known complexes, AP3 and HOPS, play important roles in endosomal transport. The interactions between these complexes form a network in protein trafficking via endosomes and cytoskeleton. Each node of this network has intra-complex and extra-complex interactions. These complexes are connected by direct interactions between the subunits from different complexes or by indirect interactions through coupling nodes that interact with two or more subunits from different complexes. The dissection of this network facilitates the understanding of a dynamic but elaborate transport machinery in protein/membrane trafficking. The disruption of this network may lead to abnormal trafficking or defective organellar development as described in patients with Hermansky-Pudlak syndrome.展开更多
FcαR, the Fc receptor for IgA, is essential for IgA-mediated immune responses. Previous studies have shown that IgA and IgA immune complexes can be rapidly endocytosed by FcαR. However, the underlying mechanism rema...FcαR, the Fc receptor for IgA, is essential for IgA-mediated immune responses. Previous studies have shown that IgA and IgA immune complexes can be rapidly endocytosed by FcαR. However, the underlying mechanism remains unclear. Here, we investigated the endocytic pathway of FcαR in monocytic cell line, U937, that naturally express FcuR and in transfected Chinese hamster ovary (CHO), COS-7 and Hela cells. By using selective chemical inhibitors of different endocytic pathways, overexpression of dominant-negative mutants of Eps15 and knockdown of clathrin heavy chain (CHC) via RNA interference, we demonstrated that endocytosis of FcaR was through a clathrin-mediated pathway. The endocytosed FcαR went into Rab5- and Rabll-positive endosomes. However, endocytosis of FcaR could not be blocked by a dominant-negative mutant of Rab5. We also demonstrated that endocytosis of FcαR was dynamin-dependent by overexpressing a dominant-negative mutant of dynamin. The potential endocytic motif for FcαR was also examined. Unexpectedly, we found that the entire cytoplasmic domain of FcaR was not required for the endocytic process of FcαR. We conclude that endocytosis of FcaR is clathrin- and dynamin-dependent, but is not regulated by RabS, and the endocytic motif is not located in the cytoplasmic domain of FcαR.展开更多
Endostatin is a natural occurred angiogenesis inhibitor derived from collagenXVIII. So far its function during the angiogenesis process of bone formation and arthropathy has not been well studied yet. The present stud...Endostatin is a natural occurred angiogenesis inhibitor derived from collagenXVIII. So far its function during the angiogenesis process of bone formation and arthropathy has not been well studied yet. The present study addresses the function of endostatin in rabbit articular chondrocytes (RAC). We found that endostatin can promote RAC adhesion and spreading as well as its proliferation. In monolayer cultured RAC, CollagenII, TIMP1 and collagenXVIII transcription were up regulated by endostatin while collagenI and MMP9 were down regulated. Moreover collagenXVIII and endostatin antigens are present at synovial fluid. These findings indicate new function of endostatin as a homeostatic factor in cartilage metabolism.展开更多
Endocytosis is a process through which extracellular materials are transported into cell through membrane deformation. This process is not a simple step-by-step process in which a series of proteins function according...Endocytosis is a process through which extracellular materials are transported into cell through membrane deformation. This process is not a simple step-by-step process in which a series of proteins function according to the chronological order, but rather a complex process comprising many members which are regulated precisely. The role of endocytosis is broadly divided into two categories, phagocytosis and pinocytosis, the latter is divided into four species in accordance with the size of endocytosis substances: clathrin dependent endocytosis, the diameter of clathrin-coated vesicle is 100-150 nm; caveolin dependent endocytosis, the diameter of caveolin protein-coated vesicle is 50-100 nm; macropinocytosis, the diam- eter of macropinocytosis is generally 0.5-2 μm, sometimes up to 5 μm; clathrin and caveolin independent endocytosis. Many proteins including endophilin A1, A2, A3, and endocytotic proteins B, B1a, and Blb as well as dynamin, actin and Rab protein families are involved in endocytosis and play an important role in different stages. The abnormal endocytosis may be involved in the development of certain diseases.展开更多
Niemann-Pick type C2(NPC2) is a lysosome luminal protein that functions in concert with NPC1 to mediate egress of lowdensity lipoprotein-derived cholesterol from lysosome. The nuclear factor kappa B subunit 2(NF-κB2)...Niemann-Pick type C2(NPC2) is a lysosome luminal protein that functions in concert with NPC1 to mediate egress of lowdensity lipoprotein-derived cholesterol from lysosome. The nuclear factor kappa B subunit 2(NF-κB2) protein is a component of NF-κB transcription factor complex critically implicated in immune and inflammatory responses. Here, we report that NF-κB2 regulates intracellular cholesterol transport by controlling NPC2 expression. RNAi-mediated disruption of NF-κB2, as well as other signaling members of the non-canonical NF-κB pathway, caused intracellular cholesterol accumulation. Blockage of the non-canonical NF-κB pathway suppressed NPC2 expression, whereas Lymphotoxin β receptor(LTβR) activation or Baff receptor(BaffR) stimulation up-regulated the mRNA abundance and protein level of NPC2. Further, NF-κB2 activated NPC2 transcription through direct binding to its promoter region. We also observed cholesterol accumulation in NF-κB2-deficient zebrafish embryo and NF-κB2 mutant mice. Collectively, these data identify a regulatory role for the non-canonical NF-κB pathway in intracellular cholesterol trafficking and suggest a link between cholesterol transport and immune system.展开更多
Ebola virus (EBOV) causes a highly lethal hemorrhagic fever syndrome in humans and has been associated with mortality rates of up to 91% in Zaire, the most lethal strain. Though the viral envelope glycoprotein (GP...Ebola virus (EBOV) causes a highly lethal hemorrhagic fever syndrome in humans and has been associated with mortality rates of up to 91% in Zaire, the most lethal strain. Though the viral envelope glycoprotein (GP) mediates widespread inflammation and cellular damage, these changes have mainly focused on alterations at the protein level, the role of microRNAs (miRNAs) in the molecular pathogenesis underlying this lethal disease is not fully understood. Here, we report that the miRNAs hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p were induced in human umbilical vein endothelial cells (HUVECs) following expression of EBOV GP. Among the proteins encoded by predicted targets of these miRNAs, the adhesion-related molecules tissue factor pathway inhibitor (TFPI), dystroglycan! (DAG1) and the caspase 8 and FADD-like apoptosis regulator (CFLAR) were significantly downregulated in EBOV GP-expressing HUVECs. Moreover, inhibition of hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p, or overexpression of TFPI, DAG1 and CFLAR rescued the cell viability that was induced by EBOV GP. Our results provide a novel molecular basis for EBOV pathogenesis and may contribute to the development of strategies to protect against future EBOV pandemics.展开更多
This review presents a simple introduction on the unique properties and general synthesis of quantum dots (QDs) in which we lay emphasis on the optical applications in the biological system. The detection of biologica...This review presents a simple introduction on the unique properties and general synthesis of quantum dots (QDs) in which we lay emphasis on the optical applications in the biological system. The detection of biological molecules such as DNA, protein and enzyme, the cell-based analysis and in vivo animal imaging are mainly discussed.展开更多
Exposure to fine ambient particulate matter(PM_(2.5)) is known to be associated with cardiovascular disease. To uncover the molecular mechanisms involved in cardiovascular toxicity of PM_(2.5), we investigated alterat...Exposure to fine ambient particulate matter(PM_(2.5)) is known to be associated with cardiovascular disease. To uncover the molecular mechanisms involved in cardiovascular toxicity of PM_(2.5), we investigated alterations in the protein profile of human umbilical vein endothelial cells(HUVECs) treated with PM_(2.5) using two-dimensional electrophoresis in conjunction with mass spectrometry(MS). A total of 31 protein spots were selected as differentially expressed proteins and identified by matrix-assisted laser desorption/ionization-time of flight(MALDI-TOF) MS. The results demonstrated that DNA damage and cell apoptosis are important factors contributing to PM_(2.5)-mediated toxicity in HUVECs. It is further proposed that PM_(2.5) can inhibit superoxide dismutase(SOD) activity and increase reactive oxygen species(ROS) and malonaldehyde(MDA) production in a concentration-dependent manner. Induction of apoptosis and DNA damage through oxidative stress pathways may be one of the key toxicological events occurring in HUVECs under PM_(2.5) stress. These results indicated that the toxic mechanisms of PM_(2.5) on cardiovascular disease are related to endothelial dysfunction.展开更多
MicroRNAs, a class of small noncoding RNAs, play key roles in diverse biological and pathological processes. ER stress, resulting from the accumulation of unfolded or misfolded proteins in the ER lumen, is triggered b...MicroRNAs, a class of small noncoding RNAs, play key roles in diverse biological and pathological processes. ER stress, resulting from the accumulation of unfolded or misfolded proteins in the ER lumen, is triggered by various physiological events and pathological insults. Here, using RNA deep sequencing analysis, we found that the expression of some microRNAs was altered in HeLa and HEK293 cells under ER stress. Protein and RNA levels of DGCR8, Drosha, Exportin-5, Dicer, and Ago2 showed no significant alteration in ER-stressed cells, which suggested that the change in microRNA expression might not be caused by the microRNA biogenesis pathway but by other, unknown factors. Real-time PCR assays confirmed that hsa-miR-423-5p was up-regulated, whereas hsa-miR-221-3p and hsa-miR-452-5p were down-regulated, in both HeLa and HEK293 cells under ER stress. Luciferase activity and Western blot assays verified that CDKN1A was a direct target of hsa-miR-423-5p and that CDKN1B was a direct target of hsa-miR-221-3p and hsamiR-452-5p. We speculated that by regulating their targets, microRNAs might function cooperatively as regulators in the adaptive response to ER stress.展开更多
基金This work was supported in part by the National Science Fund for Distinguished Young Scholars (No. 30525007)National Basic Research Program of China (No. 2006CB504103+1 种基金 No. 2006CB500704)Hi-Tech Research and Development Program of China (No. 2006AA02Z322)
文摘With the identification of more than a dozen novel Hermansky-Pudlak Syndrome (HPS) proteins in vesicle trafficking in higher eukaryotes, a new class of trafficking pathways has been described. It mainly consists of three newly-defined protein com- plexes, BLOC-l, -2, and -3. Compelling evidence indicates that these complexes together with two other well-known complexes, AP3 and HOPS, play important roles in endosomal transport. The interactions between these complexes form a network in protein trafficking via endosomes and cytoskeleton. Each node of this network has intra-complex and extra-complex interactions. These complexes are connected by direct interactions between the subunits from different complexes or by indirect interactions through coupling nodes that interact with two or more subunits from different complexes. The dissection of this network facilitates the understanding of a dynamic but elaborate transport machinery in protein/membrane trafficking. The disruption of this network may lead to abnormal trafficking or defective organellar development as described in patients with Hermansky-Pudlak syndrome.
文摘FcαR, the Fc receptor for IgA, is essential for IgA-mediated immune responses. Previous studies have shown that IgA and IgA immune complexes can be rapidly endocytosed by FcαR. However, the underlying mechanism remains unclear. Here, we investigated the endocytic pathway of FcαR in monocytic cell line, U937, that naturally express FcuR and in transfected Chinese hamster ovary (CHO), COS-7 and Hela cells. By using selective chemical inhibitors of different endocytic pathways, overexpression of dominant-negative mutants of Eps15 and knockdown of clathrin heavy chain (CHC) via RNA interference, we demonstrated that endocytosis of FcaR was through a clathrin-mediated pathway. The endocytosed FcαR went into Rab5- and Rabll-positive endosomes. However, endocytosis of FcaR could not be blocked by a dominant-negative mutant of Rab5. We also demonstrated that endocytosis of FcαR was dynamin-dependent by overexpressing a dominant-negative mutant of dynamin. The potential endocytic motif for FcαR was also examined. Unexpectedly, we found that the entire cytoplasmic domain of FcaR was not required for the endocytic process of FcαR. We conclude that endocytosis of FcaR is clathrin- and dynamin-dependent, but is not regulated by RabS, and the endocytic motif is not located in the cytoplasmic domain of FcαR.
文摘Endostatin is a natural occurred angiogenesis inhibitor derived from collagenXVIII. So far its function during the angiogenesis process of bone formation and arthropathy has not been well studied yet. The present study addresses the function of endostatin in rabbit articular chondrocytes (RAC). We found that endostatin can promote RAC adhesion and spreading as well as its proliferation. In monolayer cultured RAC, CollagenII, TIMP1 and collagenXVIII transcription were up regulated by endostatin while collagenI and MMP9 were down regulated. Moreover collagenXVIII and endostatin antigens are present at synovial fluid. These findings indicate new function of endostatin as a homeostatic factor in cartilage metabolism.
基金Supported by grants from the National Natural Sciences Foundation of China (No. 30771126 and 30772106)
文摘Endocytosis is a process through which extracellular materials are transported into cell through membrane deformation. This process is not a simple step-by-step process in which a series of proteins function according to the chronological order, but rather a complex process comprising many members which are regulated precisely. The role of endocytosis is broadly divided into two categories, phagocytosis and pinocytosis, the latter is divided into four species in accordance with the size of endocytosis substances: clathrin dependent endocytosis, the diameter of clathrin-coated vesicle is 100-150 nm; caveolin dependent endocytosis, the diameter of caveolin protein-coated vesicle is 50-100 nm; macropinocytosis, the diam- eter of macropinocytosis is generally 0.5-2 μm, sometimes up to 5 μm; clathrin and caveolin independent endocytosis. Many proteins including endophilin A1, A2, A3, and endocytotic proteins B, B1a, and Blb as well as dynamin, actin and Rab protein families are involved in endocytosis and play an important role in different stages. The abnormal endocytosis may be involved in the development of certain diseases.
基金supported by National Natural Science Foundation of China (91754102, 31771568, 31701030, 31601147, 31600651)111 Project of Ministry of Education of China (B16036)Natural Science Foundation of Hubei Province (2016CFA012)
文摘Niemann-Pick type C2(NPC2) is a lysosome luminal protein that functions in concert with NPC1 to mediate egress of lowdensity lipoprotein-derived cholesterol from lysosome. The nuclear factor kappa B subunit 2(NF-κB2) protein is a component of NF-κB transcription factor complex critically implicated in immune and inflammatory responses. Here, we report that NF-κB2 regulates intracellular cholesterol transport by controlling NPC2 expression. RNAi-mediated disruption of NF-κB2, as well as other signaling members of the non-canonical NF-κB pathway, caused intracellular cholesterol accumulation. Blockage of the non-canonical NF-κB pathway suppressed NPC2 expression, whereas Lymphotoxin β receptor(LTβR) activation or Baff receptor(BaffR) stimulation up-regulated the mRNA abundance and protein level of NPC2. Further, NF-κB2 activated NPC2 transcription through direct binding to its promoter region. We also observed cholesterol accumulation in NF-κB2-deficient zebrafish embryo and NF-κB2 mutant mice. Collectively, these data identify a regulatory role for the non-canonical NF-κB pathway in intracellular cholesterol trafficking and suggest a link between cholesterol transport and immune system.
基金supported by the National Natural Science Foundation of China(81230002,81300057,91019016,31361163004)National Basic Research Program of China(2012CB316503)+3 种基金Ministry of Health(201302017)Ministry of Science and Technology of China(2006AA02Z152)Program of Introducing Talents of Discipline to Universities(B08007)the support of the Science and Technology Commission of Shanghai Municipality(07pj14096)
文摘Ebola virus (EBOV) causes a highly lethal hemorrhagic fever syndrome in humans and has been associated with mortality rates of up to 91% in Zaire, the most lethal strain. Though the viral envelope glycoprotein (GP) mediates widespread inflammation and cellular damage, these changes have mainly focused on alterations at the protein level, the role of microRNAs (miRNAs) in the molecular pathogenesis underlying this lethal disease is not fully understood. Here, we report that the miRNAs hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p were induced in human umbilical vein endothelial cells (HUVECs) following expression of EBOV GP. Among the proteins encoded by predicted targets of these miRNAs, the adhesion-related molecules tissue factor pathway inhibitor (TFPI), dystroglycan! (DAG1) and the caspase 8 and FADD-like apoptosis regulator (CFLAR) were significantly downregulated in EBOV GP-expressing HUVECs. Moreover, inhibition of hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p, or overexpression of TFPI, DAG1 and CFLAR rescued the cell viability that was induced by EBOV GP. Our results provide a novel molecular basis for EBOV pathogenesis and may contribute to the development of strategies to protect against future EBOV pandemics.
基金support of the National Natural Science Foun-dation of China (20821063 & 50972058)supported by the National Basic Research Program of China (2011CB933502)
文摘This review presents a simple introduction on the unique properties and general synthesis of quantum dots (QDs) in which we lay emphasis on the optical applications in the biological system. The detection of biological molecules such as DNA, protein and enzyme, the cell-based analysis and in vivo animal imaging are mainly discussed.
基金Project supported by the Medical and Health Science and Technology Fund of Zhejiang Province(No.2016KYB224)the Scientific Research Fund of Zhejiang Chinese Medicine University(No.2015ZG17),China
文摘Exposure to fine ambient particulate matter(PM_(2.5)) is known to be associated with cardiovascular disease. To uncover the molecular mechanisms involved in cardiovascular toxicity of PM_(2.5), we investigated alterations in the protein profile of human umbilical vein endothelial cells(HUVECs) treated with PM_(2.5) using two-dimensional electrophoresis in conjunction with mass spectrometry(MS). A total of 31 protein spots were selected as differentially expressed proteins and identified by matrix-assisted laser desorption/ionization-time of flight(MALDI-TOF) MS. The results demonstrated that DNA damage and cell apoptosis are important factors contributing to PM_(2.5)-mediated toxicity in HUVECs. It is further proposed that PM_(2.5) can inhibit superoxide dismutase(SOD) activity and increase reactive oxygen species(ROS) and malonaldehyde(MDA) production in a concentration-dependent manner. Induction of apoptosis and DNA damage through oxidative stress pathways may be one of the key toxicological events occurring in HUVECs under PM_(2.5) stress. These results indicated that the toxic mechanisms of PM_(2.5) on cardiovascular disease are related to endothelial dysfunction.
基金supported by the National Basic Research Program of China (2011CBA01103)the National Natural Science Foundation of China (81372215, 31301069, 81171074, and 91232702)+2 种基金the Science Foundation of the Chinese Academy of Sciences (KJZD-EW-L01-2)Anhui Provincial Natural Science Foundation (1408085MC42)the Fundamental Research Funds for the Central Universities (WK2070000034)
文摘MicroRNAs, a class of small noncoding RNAs, play key roles in diverse biological and pathological processes. ER stress, resulting from the accumulation of unfolded or misfolded proteins in the ER lumen, is triggered by various physiological events and pathological insults. Here, using RNA deep sequencing analysis, we found that the expression of some microRNAs was altered in HeLa and HEK293 cells under ER stress. Protein and RNA levels of DGCR8, Drosha, Exportin-5, Dicer, and Ago2 showed no significant alteration in ER-stressed cells, which suggested that the change in microRNA expression might not be caused by the microRNA biogenesis pathway but by other, unknown factors. Real-time PCR assays confirmed that hsa-miR-423-5p was up-regulated, whereas hsa-miR-221-3p and hsa-miR-452-5p were down-regulated, in both HeLa and HEK293 cells under ER stress. Luciferase activity and Western blot assays verified that CDKN1A was a direct target of hsa-miR-423-5p and that CDKN1B was a direct target of hsa-miR-221-3p and hsamiR-452-5p. We speculated that by regulating their targets, microRNAs might function cooperatively as regulators in the adaptive response to ER stress.