In the present study, we investigated the changes of photosynthesis, chlorophyll fluorescence and the content of carotenoid pigments in rice (Oryza sativa L.) seedling leaves and their responses to high light. The res...In the present study, we investigated the changes of photosynthesis, chlorophyll fluorescence and the content of carotenoid pigments in rice (Oryza sativa L.) seedling leaves and their responses to high light. The results showed that the rate of photosynthesis, the contents of individual and total carotenoids and the pool size of xanthophyll cycle decreased with age increasing of the leaf. When the leaves were exposed to high light for 2 h, the qN of mature leaf (5th leaf) increased more significantly than that of younger (6th leaf) and older leaves (3rd and 4th leaf). Comparing with the leaves before exposure to high light, the excitation pressure on PSⅡ (1- qP ) increased by 44%, 57%, 19% and 45% in the 3rd, 4th, 5th and 6th leaf under high light, respectively. The highest content of carotenoids and the greatest conversion of violaxanthin to zeaxanthin were found in the 5th leaf, and it was consistent with the 5th leaf exhibiting the strongest resistance to high light. Our results suggested that the ability of rice leaf to resist photoinhibition is related to the level of carotenoids and the ability of carotenoids biosynthesis.展开更多
Carotenoids are fat-soluble pigments synthesised by photosynthetic organisms(Brush,1990).Conversely,animals are incapable of synthesizing carotenoids de novo,and they must obtain them through their diet.However,some a...Carotenoids are fat-soluble pigments synthesised by photosynthetic organisms(Brush,1990).Conversely,animals are incapable of synthesizing carotenoids de novo,and they must obtain them through their diet.However,some animal species are able to make some alterations to the basic chemical structure,converting ingested carotenoids into more oxidized and differently coloured forms(Schiedt,1998).展开更多
文摘In the present study, we investigated the changes of photosynthesis, chlorophyll fluorescence and the content of carotenoid pigments in rice (Oryza sativa L.) seedling leaves and their responses to high light. The results showed that the rate of photosynthesis, the contents of individual and total carotenoids and the pool size of xanthophyll cycle decreased with age increasing of the leaf. When the leaves were exposed to high light for 2 h, the qN of mature leaf (5th leaf) increased more significantly than that of younger (6th leaf) and older leaves (3rd and 4th leaf). Comparing with the leaves before exposure to high light, the excitation pressure on PSⅡ (1- qP ) increased by 44%, 57%, 19% and 45% in the 3rd, 4th, 5th and 6th leaf under high light, respectively. The highest content of carotenoids and the greatest conversion of violaxanthin to zeaxanthin were found in the 5th leaf, and it was consistent with the 5th leaf exhibiting the strongest resistance to high light. Our results suggested that the ability of rice leaf to resist photoinhibition is related to the level of carotenoids and the ability of carotenoids biosynthesis.
文摘Carotenoids are fat-soluble pigments synthesised by photosynthetic organisms(Brush,1990).Conversely,animals are incapable of synthesizing carotenoids de novo,and they must obtain them through their diet.However,some animal species are able to make some alterations to the basic chemical structure,converting ingested carotenoids into more oxidized and differently coloured forms(Schiedt,1998).