目的:由于胰腺体积小、形态个体差异性大,影像上的准确分割较为困难。本文提出一种基于2.5D级联卷积神经网络的CT图像胰腺分割方法。方法:实验中使用的数据为NIH胰腺分割公开数据集,共包含82例腹部CT图像,随机选取其中56、9、17例分别...目的:由于胰腺体积小、形态个体差异性大,影像上的准确分割较为困难。本文提出一种基于2.5D级联卷积神经网络的CT图像胰腺分割方法。方法:实验中使用的数据为NIH胰腺分割公开数据集,共包含82例腹部CT图像,随机选取其中56、9、17例分别作为训练集、验证集和测试集;训练过程中使用旋转、拉伸、平移、裁剪等操作对数据进行扩增。实验中提出一种用于胰腺分割的、结合概率图的2.5D级联深度监督UNet,即CSNet(Cascading deep Supervision UNet)。该网络由3个部分组成:第1部分基于UNet,输入连续5层图像,输出中间3层对应的粗分割图像,设置适当的阈值,使其变成二值的粗分割结果;第2部分将第1层、第3层的粗分割结果与中间层的原始图像相结合,输入另一个深度监督UNet网络,得到中间层的精细分割;第3部分将第1部分网络输出的中间层的粗分割概率图与第2部分网络输出的细分割概率图通过1×1卷积进行概率融合得到最终的输出结果。3个子网络同时进行训练,对应的能量函数联合优化,从而得到更精准的分割结果。最后,使用DSC对分割结果进行评估。结果:在独立测试集上,CSNet实现了(83.74±5.27)%的DSC值。结论:CSNet可以准确分割出CT图像上的胰腺区域。展开更多
文摘目的:由于胰腺体积小、形态个体差异性大,影像上的准确分割较为困难。本文提出一种基于2.5D级联卷积神经网络的CT图像胰腺分割方法。方法:实验中使用的数据为NIH胰腺分割公开数据集,共包含82例腹部CT图像,随机选取其中56、9、17例分别作为训练集、验证集和测试集;训练过程中使用旋转、拉伸、平移、裁剪等操作对数据进行扩增。实验中提出一种用于胰腺分割的、结合概率图的2.5D级联深度监督UNet,即CSNet(Cascading deep Supervision UNet)。该网络由3个部分组成:第1部分基于UNet,输入连续5层图像,输出中间3层对应的粗分割图像,设置适当的阈值,使其变成二值的粗分割结果;第2部分将第1层、第3层的粗分割结果与中间层的原始图像相结合,输入另一个深度监督UNet网络,得到中间层的精细分割;第3部分将第1部分网络输出的中间层的粗分割概率图与第2部分网络输出的细分割概率图通过1×1卷积进行概率融合得到最终的输出结果。3个子网络同时进行训练,对应的能量函数联合优化,从而得到更精准的分割结果。最后,使用DSC对分割结果进行评估。结果:在独立测试集上,CSNet实现了(83.74±5.27)%的DSC值。结论:CSNet可以准确分割出CT图像上的胰腺区域。
文摘为了在医学图像中提高胰腺计算机断层成像(computed tomography, CT)自动分割的准确率,针对传统分割方法存在受噪声影响大、过分割、欠分割等问题,以及胰腺周围的重要结构组织关系紧密且多变、边缘界限不易确定等特点,提出了一种基于全局特征U-net(U-net with global features, GF U-net)的胰腺图像分割方法。该方法比基于传统深度卷积神经的U-net网络能够提取出更精确的形状、纹理信息,将胰腺图像区域的毛刺边缘进行平滑化,能够更好地把握胰腺的全局特征。通过对82个由美国国立卫生研究院(national institutes of health, NIH)公开的胰腺CT数据进行四折交叉验证,得到Dice相似系数(Dice similariy coefficient, DSC)的均值为87.13%±3.76%,比传统的U-net网络增长了7.43%。提出的方法不仅拥有更高的准确率,而且生成胰腺的形状边缘更加契合生物学上的胰腺形状,更容易应用在临床医学中。