BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinn...BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinnable sol was characterized on rheometer, and the development of gel fibers to barium ferrite fibers was studied by IR, TG and XRD. Morphology observation of the fibers was given on SEM, and the diameter of the obtained fibers was between 5 and 10 um corresponding to different additives. The additives affected the surface tension of the precursor sol which had close relation to the microstructure of fibers. Sucrose and hydroxyethylic cellulose could improve the surface tension while diethanolamine and hexadecylamine reduce that of the decylamine as an additive, well-structured BaFe12O19 precursor sol. And using diethanolamine or hexafibers could be obtained.展开更多
The accuracy of hard core attractive Yukawa (HCAY) potential and adhesivehard sphere (AH) potential in representing the structure factor of short range square well potentialand Asakura and Oosawa (AO) depletion potent...The accuracy of hard core attractive Yukawa (HCAY) potential and adhesivehard sphere (AH) potential in representing the structure factor of short range square well potentialand Asakura and Oosawa (AO) depletion potential is examined by comparing theoretical predictionswith the existing simulation data and the present numerical results from the non-linear optimizedrandom phase approximation closure for Ornstein—Zernike equation. For the case of square-well (SW)potential, it is shown that the structure factor of HCAY potential based on a recently proposedsemi-analytical expression for the radial distribution function can describe the structure factor ofSW potential with reduced well width λ ≤ 2 only if the reduced contact potential βε_(sw) ≤0.25, while the analytical expression for the structure factor of AH potential under Percus-Yevick(PY) approximation completely fails for the case of λ 】 1.2. For the case of AO depletionpotential, the domain of validity of both HCAY potential and AH potential is complementary. With theabove analysis and considering the solid-liquid transition of the AH potential with an adhesiveparameter τ below 1.31 cannot be predicted by modified weighted density approximation, the roleplayed by the HCAY potential about the mapping manipulation should not be ignored.展开更多
基金Supported by National Natural Science Foundation of China(No.50506020)Natural Science Foundation of Tianjin(No.043605211)Young Teacher Foundation of Tianjin University(No.5110103)
文摘BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinnable sol was characterized on rheometer, and the development of gel fibers to barium ferrite fibers was studied by IR, TG and XRD. Morphology observation of the fibers was given on SEM, and the diameter of the obtained fibers was between 5 and 10 um corresponding to different additives. The additives affected the surface tension of the precursor sol which had close relation to the microstructure of fibers. Sucrose and hydroxyethylic cellulose could improve the surface tension while diethanolamine and hexadecylamine reduce that of the decylamine as an additive, well-structured BaFe12O19 precursor sol. And using diethanolamine or hexafibers could be obtained.
文摘The accuracy of hard core attractive Yukawa (HCAY) potential and adhesivehard sphere (AH) potential in representing the structure factor of short range square well potentialand Asakura and Oosawa (AO) depletion potential is examined by comparing theoretical predictionswith the existing simulation data and the present numerical results from the non-linear optimizedrandom phase approximation closure for Ornstein—Zernike equation. For the case of square-well (SW)potential, it is shown that the structure factor of HCAY potential based on a recently proposedsemi-analytical expression for the radial distribution function can describe the structure factor ofSW potential with reduced well width λ ≤ 2 only if the reduced contact potential βε_(sw) ≤0.25, while the analytical expression for the structure factor of AH potential under Percus-Yevick(PY) approximation completely fails for the case of λ 】 1.2. For the case of AO depletionpotential, the domain of validity of both HCAY potential and AH potential is complementary. With theabove analysis and considering the solid-liquid transition of the AH potential with an adhesiveparameter τ below 1.31 cannot be predicted by modified weighted density approximation, the roleplayed by the HCAY potential about the mapping manipulation should not be ignored.