Experiments were conducted to study the adsorption of Cd on two soil colloids (red soil and yellow- brown soil) and three variable-charge minerals (goethite, noncrystalline Fe oxide and kaolin) in the absence and pres...Experiments were conducted to study the adsorption of Cd on two soil colloids (red soil and yellow- brown soil) and three variable-charge minerals (goethite, noncrystalline Fe oxide and kaolin) in the absence and presence of rhizobia. The tested strain Rhizobium fredii C6, tolerant to 0.8 mmol L-1 Cd, was selected from 30 rhizobial strains. Results showed that the isotherms for the adsorption of Cd by examined soil colloids and minerals in the presence of rhizobia could be described by Langmuir equation. Within the range of the numbers of rhizobial cells studied, the amount of Cd adsorbed by each system increased with increasing rhizobial cells. Greater increases for the adsorption of Cd were found in red soil and kaolin systems. Rhizobia influence on the adsorption of Cd by examined soil colloids and minerals was different from that on the adsorption of Cu. The presence of rhizobia increased the adsorption sanity of soil colloids and minerals for Cd, particularly for the goethite and kaolin systems. The discrepancies in the influence of rhizobia on the adsorbability and affinity of selected soil colloids and minerals for Cd suggested the different interactions of rhizobia with various soil components. It is assumed that bacterial biomass plays an important role in controlling the mobility and bioavailability of Cd in soils with kaolinite and goethite as the major colloidal components, such as in variable-charge soil.展开更多
A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate t...A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm^2 when it was fed with H2 fuel at 700 ℃, but the power density increased to 400 mW/cm^2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 ℃. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.展开更多
It is difficult to directly dope europium complexes in gel because the excessive water or high acidic condition may lead to their decomposition. We prepared a novel homogeneous TiO2 gel containing Eu-phen complexes by...It is difficult to directly dope europium complexes in gel because the excessive water or high acidic condition may lead to their decomposition. We prepared a novel homogeneous TiO2 gel containing Eu-phen complexes by using an in-situ synthesis method. The formation of Eu-phen complexes in sol-gel derived TiO2 was confirmed by luminescence excitation spectra. The effects of temperature and aging time on in-situ synthesis are discussed. The luminescence spectra of gel containing europium complexes were also compared with the pure Eu-phen complexes.展开更多
OBJECTIVE: To investigate the effects of Yindanxinnaotong capsule(YDXNTC) and main components compatibility and ratios on myocardium against ischemia/reperfusion injury and the effect's underlying mechanism.METHOD...OBJECTIVE: To investigate the effects of Yindanxinnaotong capsule(YDXNTC) and main components compatibility and ratios on myocardium against ischemia/reperfusion injury and the effect's underlying mechanism.METHODS: Myocardial ischemia/reperfusion injury(MIRI) was induced by ischemia for 30 min and reperfusion for 30 min. Electrocardiogram data and coronary flow were recorded, and superoxide dismutase(SOD), malondialdehyde(MDA), lactate dehydrogenase, creatine kinase-MB, cardiac troponin T and I(cT nT, cT n I) and interleukin-1β, interleukin-8,interleukin-18(IL-1β, IL-8, IL-18) in myocardium were measured. Hypoxia/reoxygenation and hydrogen peroxide(H2O2) injury were induced by hypoxia for 3 h/reoxygenation for 2 h, and 100 μM H2O2 for 1 h, respectively, in vitro rat myocardial cells(H9c2). Cell viability, SOD, MDA, cT nT and inflamma-tory factors(IL-1β, IL-8 and IL-18) were determined,and Toll-like receptor 4(TLR-4) expression was measured by western blotting.RESULTS: In the isolated heart experiment, elevated heart function, coronary flow and SOD levels,and decreased MDA levels and inflammatory factors were noted in the YDXNTC, main components and main components compatibility groups. Ventricular tachycardia/ventricular fibrillation occurrence decreased in the ginkgo biloba extract(GBE),and GBE and salvia miltiorrhiza ethanol extract compatibility(SM-E, GSEC) groups. Lactic dehydrogenase levels decreased in the YDXNTC and aqueous extract of salvia miltiorrhiza(SM-H) groups. Creatine kinase-MB decreased with GBE, SM-E, SM-H and GSEC treatment, and cT n I and cT nT levels decreased with GSEC. In the in vitro cell study,YDXNTC and main components ratios improved cell viability and SOD levels, and suppressed MDA,cT nT and inflammatory factors. TLR-4 expression was down-regulated.CONCLUSION: YDXNTC and main components compatibility showed protective effects on MIRI in this rat model and in vitro study. Regulating the Toll-like receptor signaling pathway may affect the mechanism.展开更多
Objective: To study the efficacy of electrolyzed oxidizing water ( EOW ) and hydrocolloid occlusive dressings in the acceleration of epithelialization in excised burn-wounds in rats.Methods: Each of the anesthetized S...Objective: To study the efficacy of electrolyzed oxidizing water ( EOW ) and hydrocolloid occlusive dressings in the acceleration of epithelialization in excised burn-wounds in rats.Methods: Each of the anesthetized Sprague-Dawley rats (n = 28) was subjected to a third-degree burn that covered approximately 10% of the total body surface area. Rats were assigned into four groups: Group Ⅰ ( no irrigation), Group Ⅱ (irrigation with physiologic saline), Group Ⅲ ( irrigation with EOW ) and Group Ⅳ ( hydrocolloid occlusive dressing after EOW irrigation). Wounds were observed macroscopically until complete epithelialization was present, then the epithelialized wounds were examined microscopically. Results: Healing of the burn wounds was the fastest in Group Ⅳ treated with hydrocolloid occlusive dressing together with EOW. Although extensive regenerative epidermis was seen in each Group, the proliferations of lymphocytes and macrophages associated with dense collagen deposition were more extensive in Group Ⅱ, Ⅲ and IV than in Group Ⅰ. These findings were particularly evident in Group Ⅲ and Ⅳ.Conclusions: Wound Healing may be accelerated by applying a hydrocolloid occlusive dressing on burn surfaces after they are cleaned with EOW.展开更多
基金Project supported by the National Natural Science Foundation of China !(No. 49601011)the Natural Science Foundation of Hubei
文摘Experiments were conducted to study the adsorption of Cd on two soil colloids (red soil and yellow- brown soil) and three variable-charge minerals (goethite, noncrystalline Fe oxide and kaolin) in the absence and presence of rhizobia. The tested strain Rhizobium fredii C6, tolerant to 0.8 mmol L-1 Cd, was selected from 30 rhizobial strains. Results showed that the isotherms for the adsorption of Cd by examined soil colloids and minerals in the presence of rhizobia could be described by Langmuir equation. Within the range of the numbers of rhizobial cells studied, the amount of Cd adsorbed by each system increased with increasing rhizobial cells. Greater increases for the adsorption of Cd were found in red soil and kaolin systems. Rhizobia influence on the adsorption of Cd by examined soil colloids and minerals was different from that on the adsorption of Cu. The presence of rhizobia increased the adsorption sanity of soil colloids and minerals for Cd, particularly for the goethite and kaolin systems. The discrepancies in the influence of rhizobia on the adsorbability and affinity of selected soil colloids and minerals for Cd suggested the different interactions of rhizobia with various soil components. It is assumed that bacterial biomass plays an important role in controlling the mobility and bioavailability of Cd in soils with kaolinite and goethite as the major colloidal components, such as in variable-charge soil.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20871110 and No.50730002). The authors express their appreciation to Xin-bo Lii, Qingdao Tianhe Graphite Co. Ltd. for supporting appropriate pore former graphite.
文摘A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm^2 when it was fed with H2 fuel at 700 ℃, but the power density increased to 400 mW/cm^2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 ℃. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.
基金Project (No. 2004C210023) supported by Science Planning Project of Zhejiang Province, China
文摘It is difficult to directly dope europium complexes in gel because the excessive water or high acidic condition may lead to their decomposition. We prepared a novel homogeneous TiO2 gel containing Eu-phen complexes by using an in-situ synthesis method. The formation of Eu-phen complexes in sol-gel derived TiO2 was confirmed by luminescence excitation spectra. The effects of temperature and aging time on in-situ synthesis are discussed. The luminescence spectra of gel containing europium complexes were also compared with the pure Eu-phen complexes.
基金the Major National Science and Technology Projects:the Technology Reformation of Yindanxinnaotong Capsule(No.2012ZX09201201)
文摘OBJECTIVE: To investigate the effects of Yindanxinnaotong capsule(YDXNTC) and main components compatibility and ratios on myocardium against ischemia/reperfusion injury and the effect's underlying mechanism.METHODS: Myocardial ischemia/reperfusion injury(MIRI) was induced by ischemia for 30 min and reperfusion for 30 min. Electrocardiogram data and coronary flow were recorded, and superoxide dismutase(SOD), malondialdehyde(MDA), lactate dehydrogenase, creatine kinase-MB, cardiac troponin T and I(cT nT, cT n I) and interleukin-1β, interleukin-8,interleukin-18(IL-1β, IL-8, IL-18) in myocardium were measured. Hypoxia/reoxygenation and hydrogen peroxide(H2O2) injury were induced by hypoxia for 3 h/reoxygenation for 2 h, and 100 μM H2O2 for 1 h, respectively, in vitro rat myocardial cells(H9c2). Cell viability, SOD, MDA, cT nT and inflamma-tory factors(IL-1β, IL-8 and IL-18) were determined,and Toll-like receptor 4(TLR-4) expression was measured by western blotting.RESULTS: In the isolated heart experiment, elevated heart function, coronary flow and SOD levels,and decreased MDA levels and inflammatory factors were noted in the YDXNTC, main components and main components compatibility groups. Ventricular tachycardia/ventricular fibrillation occurrence decreased in the ginkgo biloba extract(GBE),and GBE and salvia miltiorrhiza ethanol extract compatibility(SM-E, GSEC) groups. Lactic dehydrogenase levels decreased in the YDXNTC and aqueous extract of salvia miltiorrhiza(SM-H) groups. Creatine kinase-MB decreased with GBE, SM-E, SM-H and GSEC treatment, and cT n I and cT nT levels decreased with GSEC. In the in vitro cell study,YDXNTC and main components ratios improved cell viability and SOD levels, and suppressed MDA,cT nT and inflammatory factors. TLR-4 expression was down-regulated.CONCLUSION: YDXNTC and main components compatibility showed protective effects on MIRI in this rat model and in vitro study. Regulating the Toll-like receptor signaling pathway may affect the mechanism.
基金This study was supported by the Ministry of Education, Science,Sports and Culture of Japan(No.10470311).
文摘Objective: To study the efficacy of electrolyzed oxidizing water ( EOW ) and hydrocolloid occlusive dressings in the acceleration of epithelialization in excised burn-wounds in rats.Methods: Each of the anesthetized Sprague-Dawley rats (n = 28) was subjected to a third-degree burn that covered approximately 10% of the total body surface area. Rats were assigned into four groups: Group Ⅰ ( no irrigation), Group Ⅱ (irrigation with physiologic saline), Group Ⅲ ( irrigation with EOW ) and Group Ⅳ ( hydrocolloid occlusive dressing after EOW irrigation). Wounds were observed macroscopically until complete epithelialization was present, then the epithelialized wounds were examined microscopically. Results: Healing of the burn wounds was the fastest in Group Ⅳ treated with hydrocolloid occlusive dressing together with EOW. Although extensive regenerative epidermis was seen in each Group, the proliferations of lymphocytes and macrophages associated with dense collagen deposition were more extensive in Group Ⅱ, Ⅲ and IV than in Group Ⅰ. These findings were particularly evident in Group Ⅲ and Ⅳ.Conclusions: Wound Healing may be accelerated by applying a hydrocolloid occlusive dressing on burn surfaces after they are cleaned with EOW.