期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
薄层胶体毛细管多孔物料干燥动力学的研究 被引量:1
1
作者 杨冰 马克承 石炎福 《武汉工程大学学报》 CAS 1992年第Z1期52-58,共7页
考查了典型的薄层胶体毛细管多孔物料在较宽广条件范围内干燥动力学行为。通过理论分析建立了一种数学模型;结合实测数据得出相应关联式,计算结果与实测值十分接近。由此提出一种预测薄层胶体毛细管多孔物料干燥速率的新方法。
关键词 干燥动力学 薄层胶体多孔物料 数学模型
下载PDF
散状料层在加热表面上的接触传导加热干燥分析
2
作者 庞树声 王玉山 《化工机械》 CAS 北大核心 1992年第3期134-139,共6页
关键词 散状料层 胶体物料 传导干燥
下载PDF
Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method 被引量:1
3
作者 张龙山 高建峰 +1 位作者 田瑞芬 夏长荣 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第4期429-434,448,共7页
A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate t... A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm^2 when it was fed with H2 fuel at 700 ℃, but the power density increased to 400 mW/cm^2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 ℃. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement. 展开更多
关键词 Tubular solid oxide fuel cell Gel casting IMPREGNATION METHANE
下载PDF
Effect of electrolyzed oxidizing water and hydrocolloid occlusive dressings on excised burn-wounds in rats 被引量:2
4
作者 辛华 郑雅娟 +1 位作者 中永士师明 韩振国 《Chinese Journal of Traumatology》 CAS 2003年第4期234-237,共4页
Objective: To study the efficacy of electrolyzed oxidizing water ( EOW ) and hydrocolloid occlusive dressings in the acceleration of epithelialization in excised burn-wounds in rats.Methods: Each of the anesthetized S... Objective: To study the efficacy of electrolyzed oxidizing water ( EOW ) and hydrocolloid occlusive dressings in the acceleration of epithelialization in excised burn-wounds in rats.Methods: Each of the anesthetized Sprague-Dawley rats (n = 28) was subjected to a third-degree burn that covered approximately 10% of the total body surface area. Rats were assigned into four groups: Group Ⅰ ( no irrigation), Group Ⅱ (irrigation with physiologic saline), Group Ⅲ ( irrigation with EOW ) and Group Ⅳ ( hydrocolloid occlusive dressing after EOW irrigation). Wounds were observed macroscopically until complete epithelialization was present, then the epithelialized wounds were examined microscopically. Results: Healing of the burn wounds was the fastest in Group Ⅳ treated with hydrocolloid occlusive dressing together with EOW. Although extensive regenerative epidermis was seen in each Group, the proliferations of lymphocytes and macrophages associated with dense collagen deposition were more extensive in Group Ⅱ, Ⅲ and IV than in Group Ⅰ. These findings were particularly evident in Group Ⅲ and Ⅳ.Conclusions: Wound Healing may be accelerated by applying a hydrocolloid occlusive dressing on burn surfaces after they are cleaned with EOW. 展开更多
关键词 Occlusive dressings Wounds and injuries COLLOIDS EPITHELIUM Electrolyzed oxidizing water
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部