In this study, SCM (supplementary cementitious materials), such as nano silica, micro silica, fly ash and bottom ash, have been evaluated for optimal level of replacement as blending material in cement and concrete....In this study, SCM (supplementary cementitious materials), such as nano silica, micro silica, fly ash and bottom ash, have been evaluated for optimal level of replacement as blending material in cement and concrete. The physical and chemical properties of the above materials were first analyzed. This study focused on compressive strength of concrete with different mixes at different ages. In many cases, products made with fly ash, micro silica, nano silica and bottom ash perform better than products made without them. Test results obtained in this study indicate that up to 5% nano silica, 10% micro silica, 20-30% fly ash and 10% bottom ash could be advantageously blended with cement without adversely affecting the strength. However, optimum levels of these materials are 1-3% nano silica, 3-8% micro silica, 10% fly ash and 5% of bottom ash when we consider the strength of concrete. All percentages are defined by weight unless otherwise mentioned.展开更多
文摘In this study, SCM (supplementary cementitious materials), such as nano silica, micro silica, fly ash and bottom ash, have been evaluated for optimal level of replacement as blending material in cement and concrete. The physical and chemical properties of the above materials were first analyzed. This study focused on compressive strength of concrete with different mixes at different ages. In many cases, products made with fly ash, micro silica, nano silica and bottom ash perform better than products made without them. Test results obtained in this study indicate that up to 5% nano silica, 10% micro silica, 20-30% fly ash and 10% bottom ash could be advantageously blended with cement without adversely affecting the strength. However, optimum levels of these materials are 1-3% nano silica, 3-8% micro silica, 10% fly ash and 5% of bottom ash when we consider the strength of concrete. All percentages are defined by weight unless otherwise mentioned.