目的:验证一种来源于巴沙鱼皮的胶原蛋白支架材料作为屏障膜在兔颅骨引导骨再生(Guided Bone Regeneration,GBR)术中的成骨效果。方法:取新西兰大白兔12只,分别在其颅顶矢状缝左侧建立一个缺损,右侧建立两个缺损,缺损为圆形,直径8mm,共...目的:验证一种来源于巴沙鱼皮的胶原蛋白支架材料作为屏障膜在兔颅骨引导骨再生(Guided Bone Regeneration,GBR)术中的成骨效果。方法:取新西兰大白兔12只,分别在其颅顶矢状缝左侧建立一个缺损,右侧建立两个缺损,缺损为圆形,直径8mm,共计36个骨缺损;然后按观察时间随机分为8周、12周两大组,每一大组随机分为3个亚组(n=4);A组缺损中只植入Bio-Oss骨粉,B组植入Bio-oss骨粉+巴沙鱼皮胶原支架材料;C组植入Bio-oss骨粉+Bio-Gide胶原膜。于术后8、12周处死相应组大白兔,切取骨缺损区标本并制作HE染色组织切片,定量分析各组骨缺损区骨组织再生的情况。结果:巴沙鱼胶原蛋白支架材料在GBR技术中能发挥屏障膜作用,引导和促进兔颅骨组织再生,其中B组与C组相比,8周时的成骨效果的差异无统计学意义(P>0.05),12周时C组成骨效果略高于B组(P<0.05);而A组在8周和12周时的成骨效果均显著低于B、C两组(P<0.05)。结论:巴沙鱼皮胶原蛋白支架材料作为屏障膜在兔颅骨缺损修复中起到了引导骨再生的作用。展开更多
To create a scaffold that is suitable for the construction of tissue-engineered skin, a novel asymmetric porous scaffold with different pore sizes on either side was prepared by combining a collagen-chitosan porous me...To create a scaffold that is suitable for the construction of tissue-engineered skin, a novel asymmetric porous scaffold with different pore sizes on either side was prepared by combining a collagen-chitosan porous membrane with fibrin glue. Tissue-engineered skin was fabricated using this asymmetric scaffold, fibroblasts, and a human keratinocyte line (HaCaT). Epidermal cells could be seen growing easily and achieved confluence on the fibrin glue on the upper surface of the scaffold. Scanning electron microscopy showed typical shuttle-like fibroblasts adhering to the wall of the scaffold and fluorescence microscopy showed them growing in the dermal layer of the scaffold. The constructed composite skin substitute had a histological structure similar to that of normal skin tissue after three weeks of culture. The results of our study suggest that the asymmetric scaffold is a promising biologically functional material for skin tissue engineering, with prospects for clinical applications.展开更多
文摘目的:验证一种来源于巴沙鱼皮的胶原蛋白支架材料作为屏障膜在兔颅骨引导骨再生(Guided Bone Regeneration,GBR)术中的成骨效果。方法:取新西兰大白兔12只,分别在其颅顶矢状缝左侧建立一个缺损,右侧建立两个缺损,缺损为圆形,直径8mm,共计36个骨缺损;然后按观察时间随机分为8周、12周两大组,每一大组随机分为3个亚组(n=4);A组缺损中只植入Bio-Oss骨粉,B组植入Bio-oss骨粉+巴沙鱼皮胶原支架材料;C组植入Bio-oss骨粉+Bio-Gide胶原膜。于术后8、12周处死相应组大白兔,切取骨缺损区标本并制作HE染色组织切片,定量分析各组骨缺损区骨组织再生的情况。结果:巴沙鱼胶原蛋白支架材料在GBR技术中能发挥屏障膜作用,引导和促进兔颅骨组织再生,其中B组与C组相比,8周时的成骨效果的差异无统计学意义(P>0.05),12周时C组成骨效果略高于B组(P<0.05);而A组在8周和12周时的成骨效果均显著低于B、C两组(P<0.05)。结论:巴沙鱼皮胶原蛋白支架材料作为屏障膜在兔颅骨缺损修复中起到了引导骨再生的作用。
基金Project supported by the National Basic Research Program (973) of China (No. 2005CB623902-1)the Science Research Foundation of the Ministry of Health of China (No. WKJ2006-2-2007)
文摘To create a scaffold that is suitable for the construction of tissue-engineered skin, a novel asymmetric porous scaffold with different pore sizes on either side was prepared by combining a collagen-chitosan porous membrane with fibrin glue. Tissue-engineered skin was fabricated using this asymmetric scaffold, fibroblasts, and a human keratinocyte line (HaCaT). Epidermal cells could be seen growing easily and achieved confluence on the fibrin glue on the upper surface of the scaffold. Scanning electron microscopy showed typical shuttle-like fibroblasts adhering to the wall of the scaffold and fluorescence microscopy showed them growing in the dermal layer of the scaffold. The constructed composite skin substitute had a histological structure similar to that of normal skin tissue after three weeks of culture. The results of our study suggest that the asymmetric scaffold is a promising biologically functional material for skin tissue engineering, with prospects for clinical applications.