A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The struct...A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.展开更多
The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by ...The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by the methods of TG-DTG, FT-IR, XRD, SEM and TEM. The dielectric properties of the ceramics were also measured. The results indicated that the powders calcined at 850 ℃ for 2 h are both nanometer scale particles. After sintering, the ceramics mainly consist of the CaCu3Ti4O12 phase. Compared with the powders prepared using monoacid, the particle size of the powders prepared using diacid obviously increases, and the grain size, the relative density and the whole permittivity of the ceramics increase as well. Specially, the ceramic prepared using decanedioic acid has higher relative density (97.3%), dielectric constant (316 808) and lower dielectric loss (0.242 5) at 30 ℃ (10 kIaz)展开更多
Nanosized copper powders were prepared by a gel-casting method using copper nitrate, acrylamide(AM) and N, N′-methylenebisacrylamide(MBAM) as the main raw materials. The as-prepared copper powders were characteri...Nanosized copper powders were prepared by a gel-casting method using copper nitrate, acrylamide(AM) and N, N′-methylenebisacrylamide(MBAM) as the main raw materials. The as-prepared copper powders were characterized by X-ray diffractometry and scanning electron microscopy, and then added into a 48# industrial white oil. Dispersion and wear properties of the compounded lubricating oil were tested. The results show that the copper powders prepared are of high purity, fine dispersibility with mean particle size of about 60 nm and with a narrow particle size distribution. The nanosized copper powders can be well dispersed in the lubricating oil. The addition of the copper powders obviously improves the anti-wear properties of the lubricating oil owing to their good self-repairing performance. Compared with 48# industrial white lubricating oil, the friction coefficient of GCr15 steel with the compounded oil containing 0.6% copper powders reduces by 0.07 and nearly no wear chippings are found in the scratches of the friction counter parts.展开更多
The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration product...The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.展开更多
In this paper, properties of new kind of modified bitumen are presented. Bituminous binder was modified with mix modification using polymer and additive of crumb rubber. Terminal blend process at the refinery was appl...In this paper, properties of new kind of modified bitumen are presented. Bituminous binder was modified with mix modification using polymer and additive of crumb rubber. Terminal blend process at the refinery was applied to produce the mixed modified binder. Laboratory tests were focused on the characterization of the properties of 45/80-55 CR binder with comparison to reference 50/70 and conventional polymer modified 45/80-55 bitumen. Based on conventional binder tests such as penetration, softening point and Fraass breaking point as well as BBR (bending beam rheometer) and DSR (dynamic shear rheometer) tests, rheological properties were investigated. For determination of stability of the polymer and crumb rubber, modified bitumen tube testing method was used. Based on the results analysis, improvement of the viscoelastic properties of polymer and crumb rubber modified bitumen was observed. Conventional properties and stability tests showed that it is possible to pass standard requirements for polymer modified bitumen. Mixed modification and terminal blend allow to use crumb rubber as a modifier with elimination of the separation of crumb rubber during transportation and storage at high temperature. In this paper, experience from filed sections with use of the asphalt mixture with new kind of modified bitumen is presented.展开更多
SnS-C composite powders were prepared through one-pot spray pyrolysis for use as anode materials for Na-ion batteries. C microspheres with uniformly attached cubic-like SnS nanocrystals, which have an amorphous C coat...SnS-C composite powders were prepared through one-pot spray pyrolysis for use as anode materials for Na-ion batteries. C microspheres with uniformly attached cubic-like SnS nanocrystals, which have an amorphous C coating layer, were formed at a preparation temperature of 900 ℃. The initial discharge capacities of the bare SnS and SnS-C composite powders at a current density of 500 mA·g^-1 were 695 and 740 mA·h·g^-1, respectively. The discharge capacities after 50 cycles and the capacity retentions measured from the second cycle of the bare SnS and SnS-C composite powders were 25 and 433 mA.h.g-1 and 5 and 89%, respectively. The prepared SnS-C composite powders with high reversible capacities and good cycle performance can be used as Na-ion battery anode materials.展开更多
A novel sol-gel processing was developed to synthesize polycrystalline cerium-doped lutetium pyrosilicate (Lu2Si2O7Ce, LPS :Ce) powders under low temperature. It was found that the addition of propylene oxide (PPO...A novel sol-gel processing was developed to synthesize polycrystalline cerium-doped lutetium pyrosilicate (Lu2Si2O7Ce, LPS :Ce) powders under low temperature. It was found that the addition of propylene oxide (PPO) could promote the formation of Lu-O-Si bonds in precursor, which was beneficial to the formation of LPS phase. X-ray diffraction (XRD) patterns indicated that the single-phased LPS powder was well crystallized at 1050℃. Microstructure observation demonstrated that the synthetic LPS powder was composed of ellipsoidal grains with the mean size of 40 nm. The luminescent properties were characterized by photoluminescence (PL), X-ray excited luminescence (XEL) and vacuum ultraviolet (VUV) spectroscopy at room temperature. The synthetic LPS:Ce powder emitted a broad emission spectrum centered at about 380 nm, which should be ascribed to the 5d→4f transition of Ce3+. Decay time of the synthetic LPS:Ce powder was measured to be only 32 ns.展开更多
基金supported by the National Natural Science Foundation of China(21377018)the Natural Science Foundation of Liaoning Province of China(2013020116)the Fundamental Research Funds for the Central Universities(DUT15ZD240)~~
文摘A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.
基金Projects(CC20120031,CC20110048)supported by Changzhou Science and Technology Innovation Project,China
文摘The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by the methods of TG-DTG, FT-IR, XRD, SEM and TEM. The dielectric properties of the ceramics were also measured. The results indicated that the powders calcined at 850 ℃ for 2 h are both nanometer scale particles. After sintering, the ceramics mainly consist of the CaCu3Ti4O12 phase. Compared with the powders prepared using monoacid, the particle size of the powders prepared using diacid obviously increases, and the grain size, the relative density and the whole permittivity of the ceramics increase as well. Specially, the ceramic prepared using decanedioic acid has higher relative density (97.3%), dielectric constant (316 808) and lower dielectric loss (0.242 5) at 30 ℃ (10 kIaz)
基金Project(51674095)supported by the National Natural Science Foundation of China
文摘Nanosized copper powders were prepared by a gel-casting method using copper nitrate, acrylamide(AM) and N, N′-methylenebisacrylamide(MBAM) as the main raw materials. The as-prepared copper powders were characterized by X-ray diffractometry and scanning electron microscopy, and then added into a 48# industrial white oil. Dispersion and wear properties of the compounded lubricating oil were tested. The results show that the copper powders prepared are of high purity, fine dispersibility with mean particle size of about 60 nm and with a narrow particle size distribution. The nanosized copper powders can be well dispersed in the lubricating oil. The addition of the copper powders obviously improves the anti-wear properties of the lubricating oil owing to their good self-repairing performance. Compared with 48# industrial white lubricating oil, the friction coefficient of GCr15 steel with the compounded oil containing 0.6% copper powders reduces by 0.07 and nearly no wear chippings are found in the scratches of the friction counter parts.
基金Project(51208391) supported by the National Natural Science Foundation of China
文摘The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.
文摘In this paper, properties of new kind of modified bitumen are presented. Bituminous binder was modified with mix modification using polymer and additive of crumb rubber. Terminal blend process at the refinery was applied to produce the mixed modified binder. Laboratory tests were focused on the characterization of the properties of 45/80-55 CR binder with comparison to reference 50/70 and conventional polymer modified 45/80-55 bitumen. Based on conventional binder tests such as penetration, softening point and Fraass breaking point as well as BBR (bending beam rheometer) and DSR (dynamic shear rheometer) tests, rheological properties were investigated. For determination of stability of the polymer and crumb rubber, modified bitumen tube testing method was used. Based on the results analysis, improvement of the viscoelastic properties of polymer and crumb rubber modified bitumen was observed. Conventional properties and stability tests showed that it is possible to pass standard requirements for polymer modified bitumen. Mixed modification and terminal blend allow to use crumb rubber as a modifier with elimination of the separation of crumb rubber during transportation and storage at high temperature. In this paper, experience from filed sections with use of the asphalt mixture with new kind of modified bitumen is presented.
文摘SnS-C composite powders were prepared through one-pot spray pyrolysis for use as anode materials for Na-ion batteries. C microspheres with uniformly attached cubic-like SnS nanocrystals, which have an amorphous C coating layer, were formed at a preparation temperature of 900 ℃. The initial discharge capacities of the bare SnS and SnS-C composite powders at a current density of 500 mA·g^-1 were 695 and 740 mA·h·g^-1, respectively. The discharge capacities after 50 cycles and the capacity retentions measured from the second cycle of the bare SnS and SnS-C composite powders were 25 and 433 mA.h.g-1 and 5 and 89%, respectively. The prepared SnS-C composite powders with high reversible capacities and good cycle performance can be used as Na-ion battery anode materials.
基金supported by the National Natural Science Foundation of China(Grant No.51172139)
文摘A novel sol-gel processing was developed to synthesize polycrystalline cerium-doped lutetium pyrosilicate (Lu2Si2O7Ce, LPS :Ce) powders under low temperature. It was found that the addition of propylene oxide (PPO) could promote the formation of Lu-O-Si bonds in precursor, which was beneficial to the formation of LPS phase. X-ray diffraction (XRD) patterns indicated that the single-phased LPS powder was well crystallized at 1050℃. Microstructure observation demonstrated that the synthetic LPS powder was composed of ellipsoidal grains with the mean size of 40 nm. The luminescent properties were characterized by photoluminescence (PL), X-ray excited luminescence (XEL) and vacuum ultraviolet (VUV) spectroscopy at room temperature. The synthetic LPS:Ce powder emitted a broad emission spectrum centered at about 380 nm, which should be ascribed to the 5d→4f transition of Ce3+. Decay time of the synthetic LPS:Ce powder was measured to be only 32 ns.