Conductive and adhesive hydrogels are promising materials for designing bioelectronics.To satisfy the high conductivity of bioelectronic devices,metal nanomaterials have been used to fabricate composite hydrogels.Howe...Conductive and adhesive hydrogels are promising materials for designing bioelectronics.To satisfy the high conductivity of bioelectronic devices,metal nanomaterials have been used to fabricate composite hydrogels.However,the fabrication of a conductive-nanomaterial-incorporated hydrogel with high performance is a great challenge because of the easy aggregation nature of conductive nanomaterials making processing difficult.Here,we report a kind of adhesive aero-hydrogel hybrid conductor(AAHC)with stretchable,adhesive and anti-bacteria properties by in situ formation of a hydrogel network in the aerogel-silver nanowires(AgNWs)assembly.The AgNWs with good conductivity are wellintegrated on the inner-surface of shape-memory chitosan aerogel,which created a conductive framework to allow hydrogel back-filling.Reinforcement by the aerogel-silver makes the hybrid hydrogel tough and stretchable.Functional groups from the hydrogel allow strong adhesion to wet tissues through molecular stitches.The inherent bacteria-killing ability of silver ions endows the conductive hydrogel with excellent anti-bacteria performance.The proposed facile strategy of aerogel-assisted assembly of metal nanomaterials with hydrogel opens a new route to incorporate functional nanoscale building blocks into hydrogels.展开更多
Conversion of waste biomass to valuable carbonaceous material is a sustainable and environmental benign method for energy and reduction of greenhouse gas emission. Herein, a two-step hydrothermal method was developed ...Conversion of waste biomass to valuable carbonaceous material is a sustainable and environmental benign method for energy and reduction of greenhouse gas emission. Herein, a two-step hydrothermal method was developed to fabricate high performance electrode material from pomelo peels. In the first step, the pomelo peels were transformed to carbonaceous aerogel (CA), which constructed of three- dimensional, sponge-like brown monolith with hierarchical pores, low-density (0.032 g]cm3) and excel- lent mechanical flexibility. Then, the cobalt nickel aluminum layered double hydroxide (CoNiAI-LDH) was in situ loaded on the surface of CA to form exquisite core-shell structure (CoNiAI-LDH@CA) through the second hydrothermal step. When used as an electrode material for supercapacitor, CoNiA1-LDHOCA exhibited high specific capacitances of 1,134F/g at 1A/g and 902Fig at 10A/g, respectively. Furthermore, they displayed an excellent cycling stability without an obvious capacitance decrease after 4,000 cycles.展开更多
基金the National Natural Science Foundation of China(51732011,51702310,21431006,and 21761132008)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(21521001)+2 种基金the Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-SLH036)the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS(2015HSC-UE007)Anhui Provincial Natural Science Foundation(1808085ME115)。
文摘Conductive and adhesive hydrogels are promising materials for designing bioelectronics.To satisfy the high conductivity of bioelectronic devices,metal nanomaterials have been used to fabricate composite hydrogels.However,the fabrication of a conductive-nanomaterial-incorporated hydrogel with high performance is a great challenge because of the easy aggregation nature of conductive nanomaterials making processing difficult.Here,we report a kind of adhesive aero-hydrogel hybrid conductor(AAHC)with stretchable,adhesive and anti-bacteria properties by in situ formation of a hydrogel network in the aerogel-silver nanowires(AgNWs)assembly.The AgNWs with good conductivity are wellintegrated on the inner-surface of shape-memory chitosan aerogel,which created a conductive framework to allow hydrogel back-filling.Reinforcement by the aerogel-silver makes the hybrid hydrogel tough and stretchable.Functional groups from the hydrogel allow strong adhesion to wet tissues through molecular stitches.The inherent bacteria-killing ability of silver ions endows the conductive hydrogel with excellent anti-bacteria performance.The proposed facile strategy of aerogel-assisted assembly of metal nanomaterials with hydrogel opens a new route to incorporate functional nanoscale building blocks into hydrogels.
基金supported by the National Natural Science Foundation of China(21333009,21273244,21573245)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2017049)
文摘Conversion of waste biomass to valuable carbonaceous material is a sustainable and environmental benign method for energy and reduction of greenhouse gas emission. Herein, a two-step hydrothermal method was developed to fabricate high performance electrode material from pomelo peels. In the first step, the pomelo peels were transformed to carbonaceous aerogel (CA), which constructed of three- dimensional, sponge-like brown monolith with hierarchical pores, low-density (0.032 g]cm3) and excel- lent mechanical flexibility. Then, the cobalt nickel aluminum layered double hydroxide (CoNiAI-LDH) was in situ loaded on the surface of CA to form exquisite core-shell structure (CoNiAI-LDH@CA) through the second hydrothermal step. When used as an electrode material for supercapacitor, CoNiA1-LDHOCA exhibited high specific capacitances of 1,134F/g at 1A/g and 902Fig at 10A/g, respectively. Furthermore, they displayed an excellent cycling stability without an obvious capacitance decrease after 4,000 cycles.