Graphene aerogels are desirable for energy storage and conversion, as catalysis supports, and as adsorbents for environmental remediation. To produce graphene aerogels with low density, while maintaining high electric...Graphene aerogels are desirable for energy storage and conversion, as catalysis supports, and as adsorbents for environmental remediation. To produce graphene aerogels with low density, while maintaining high electrical conductivity and strong mechanic performance, we synthesized graphene aerogels by the magnesiothermic reduction of a freeze-dried graphene oxide (GO) self-assembly and subsequent etching of the formed MgO in acid solution. The reduced graphene oxide (rGO) aerogel samples exhibited densities as low as 1.1 mg·cm^-3. The rGO aerogel was very resilient, exhibiting full recoveryeven after being compressed by strains of up to 80%; its elastic modulus (E) scaled with density (p) as E-p^2. The rGO aerogels also exhibited high conductivities (e.g., 27.7 S·m^-1 at 3.6 mg·cm^-3) and outperformed many rGO aerogels fabricated by other reduction processes. Such outstanding properties were ascribed to the microstructures inherited from the freeze-dried GO self-assembly and the magnesiothermic reduction process.展开更多
基金This work was supported Foundation for Returned Education of China, Key by the Scientific Research Scholars, the Ministry of Basic Research Projects of Science and Technology Commission of Shanghai (No.11JC1412900), and the National Science Foundation of China program (Nos. 21271140, 51472182).
文摘Graphene aerogels are desirable for energy storage and conversion, as catalysis supports, and as adsorbents for environmental remediation. To produce graphene aerogels with low density, while maintaining high electrical conductivity and strong mechanic performance, we synthesized graphene aerogels by the magnesiothermic reduction of a freeze-dried graphene oxide (GO) self-assembly and subsequent etching of the formed MgO in acid solution. The reduced graphene oxide (rGO) aerogel samples exhibited densities as low as 1.1 mg·cm^-3. The rGO aerogel was very resilient, exhibiting full recoveryeven after being compressed by strains of up to 80%; its elastic modulus (E) scaled with density (p) as E-p^2. The rGO aerogels also exhibited high conductivities (e.g., 27.7 S·m^-1 at 3.6 mg·cm^-3) and outperformed many rGO aerogels fabricated by other reduction processes. Such outstanding properties were ascribed to the microstructures inherited from the freeze-dried GO self-assembly and the magnesiothermic reduction process.