Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the c...Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the catalyst. The ionic liquids were prepared with different molar ratios of Et3NHC1 to A1CI3, and the effect of the molar ratio between A1C13 and Et3NHC1, the reaction time, the reaction temperature, the ionic liquid dosage, as well as the molar ratio of toluene to chloro- 2-methylpropane on the alkylation reaction of toluene with chloro-2-methyl-propane was investigated. The test results showed that the acidic ionic liquids prepared with Et3NHC1 and A1C13 had good activity and selectivity for the alkylation reaction of toluene with alkyl chloride to produce PTBT. The optimal reaction conditions were specified at an A1C13 to Et3N- HCI ratio of 1.6, a reaction temperature of 20 ℃, a mass fraction of toluene to ionic liquid of 10%, and a chloro-2-methyl- propane to toluene molar ratio of 0.5. Under the suitable reaction conditions, a 98% conversion of chloro-2-methylpropane and an 82.5% selectivity of PTBT were obtained. Ionic liquids could be reused 5 times with its catalytic activity unchanged, and the regenerated ionic liquids can be recycled.展开更多
Fine soil generated from the soil washing process can be the second problem, as contaminants are concentrated in the fine soil, and also took the difficult forms to treat because soluble and exchangeable fractions are...Fine soil generated from the soil washing process can be the second problem, as contaminants are concentrated in the fine soil, and also took the difficult forms to treat because soluble and exchangeable fractions are already removed by soil washing process; therefore, the fine soil is indicated to hazardous waste, and discarded in hazardous waste landfill. Thus, this research would be performed that arsenic and heavy metals formed difficult to remove in the fine soil were converted to more treatable fractions with chelating agents. Moreover, feasibility study to apply the second remediation targeted to the fine soil inquired. As a result, the chelating agent was decided 50 mM Na2EDTA, and it could develop the complex. In addition, the result of sequential extraction showed that Mn/Fe-oxide fraction, comprised about 28% of amount at first, was decreased about 16%, and organic fraction, consisted approximately 20%, was also decreased about 11%, while exchangeable fraction and carbonate fraction were increased. This result means that the difficult fractions removed could change fractions) by chelating agent. This research can provide the possibility hazardous waste because of difficulty to remediate. the more treatable fractions (exchangeable and carbonate to treat the fine soil, although the fine soil was regarded to展开更多
A series of poly(vinyl acetate-co-acrylamide)copolymers with different mole ratios of vinyl acetate to acrylamide units were synthesized by emulsion polymerization for investigating the influences of copolymer composi...A series of poly(vinyl acetate-co-acrylamide)copolymers with different mole ratios of vinyl acetate to acrylamide units were synthesized by emulsion polymerization for investigating the influences of copolymer composition upon the performance such as apparent viscosity,film behaviors,and adhesion capacity to fibers for warp sizing operation.The mole ratios of vinyl acetate to acrylamide were varied from 0 to 4.By using an impregnated roving method,the adhesion was evaluated in terms of the maximal strength and work to break of a slightly sized roving.The film behaviors included breaking strength,breaking elongation,solution time and hygroscopic capacity.It was found that the viscosity,adhesion capability,glass transition temperature and film behaviors of the copolymeric sizing agent strongly depended on the mole ratio.Excessively increasing the amounts of vinyl acetate or acrylamide units incorporated into the copolymeric chains damages much of the performance.A favorable mole ratio of vinyl acetate or acrylamide was found to be 45∶55.Based on this mole ratio,the adhesion capability and film behaviors of the sizing agent reach their maximal values simultaneously.This demonstrates that the sizing agent should be synthesized under this copolymer composition from the viewpoint of adhesion and film behaviors.展开更多
基金the financial support from the Beijing University of Chemical Technologythe Key Laboratory of Advanced Chemical Engineering and Technology, Beijing Institute of Petrochemical Technology, for the analysis of samples
文摘Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the catalyst. The ionic liquids were prepared with different molar ratios of Et3NHC1 to A1CI3, and the effect of the molar ratio between A1C13 and Et3NHC1, the reaction time, the reaction temperature, the ionic liquid dosage, as well as the molar ratio of toluene to chloro- 2-methylpropane on the alkylation reaction of toluene with chloro-2-methyl-propane was investigated. The test results showed that the acidic ionic liquids prepared with Et3NHC1 and A1C13 had good activity and selectivity for the alkylation reaction of toluene with alkyl chloride to produce PTBT. The optimal reaction conditions were specified at an A1C13 to Et3N- HCI ratio of 1.6, a reaction temperature of 20 ℃, a mass fraction of toluene to ionic liquid of 10%, and a chloro-2-methyl- propane to toluene molar ratio of 0.5. Under the suitable reaction conditions, a 98% conversion of chloro-2-methylpropane and an 82.5% selectivity of PTBT were obtained. Ionic liquids could be reused 5 times with its catalytic activity unchanged, and the regenerated ionic liquids can be recycled.
文摘Fine soil generated from the soil washing process can be the second problem, as contaminants are concentrated in the fine soil, and also took the difficult forms to treat because soluble and exchangeable fractions are already removed by soil washing process; therefore, the fine soil is indicated to hazardous waste, and discarded in hazardous waste landfill. Thus, this research would be performed that arsenic and heavy metals formed difficult to remove in the fine soil were converted to more treatable fractions with chelating agents. Moreover, feasibility study to apply the second remediation targeted to the fine soil inquired. As a result, the chelating agent was decided 50 mM Na2EDTA, and it could develop the complex. In addition, the result of sequential extraction showed that Mn/Fe-oxide fraction, comprised about 28% of amount at first, was decreased about 16%, and organic fraction, consisted approximately 20%, was also decreased about 11%, while exchangeable fraction and carbonate fraction were increased. This result means that the difficult fractions removed could change fractions) by chelating agent. This research can provide the possibility hazardous waste because of difficulty to remediate. the more treatable fractions (exchangeable and carbonate to treat the fine soil, although the fine soil was regarded to
基金The Foundation of Talented Persons in Anhui Province(No.2002Z036)
文摘A series of poly(vinyl acetate-co-acrylamide)copolymers with different mole ratios of vinyl acetate to acrylamide units were synthesized by emulsion polymerization for investigating the influences of copolymer composition upon the performance such as apparent viscosity,film behaviors,and adhesion capacity to fibers for warp sizing operation.The mole ratios of vinyl acetate to acrylamide were varied from 0 to 4.By using an impregnated roving method,the adhesion was evaluated in terms of the maximal strength and work to break of a slightly sized roving.The film behaviors included breaking strength,breaking elongation,solution time and hygroscopic capacity.It was found that the viscosity,adhesion capability,glass transition temperature and film behaviors of the copolymeric sizing agent strongly depended on the mole ratio.Excessively increasing the amounts of vinyl acetate or acrylamide units incorporated into the copolymeric chains damages much of the performance.A favorable mole ratio of vinyl acetate or acrylamide was found to be 45∶55.Based on this mole ratio,the adhesion capability and film behaviors of the sizing agent reach their maximal values simultaneously.This demonstrates that the sizing agent should be synthesized under this copolymer composition from the viewpoint of adhesion and film behaviors.