为了降低对氨基苯甲脒亚胺基甲酸正己酯盐酸盐的合成成本,以对硝基苯甲醛为起始原料,与盐酸羟胺在三氯化铁的催化下反应生成对硝基苯腈,收率75%.硝基苯腈与氯化铵发生成脒反应生成对硝基苯甲脒,收率63.6%.它在碱性条件下与氯甲酸正己酯...为了降低对氨基苯甲脒亚胺基甲酸正己酯盐酸盐的合成成本,以对硝基苯甲醛为起始原料,与盐酸羟胺在三氯化铁的催化下反应生成对硝基苯腈,收率75%.硝基苯腈与氯化铵发生成脒反应生成对硝基苯甲脒,收率63.6%.它在碱性条件下与氯甲酸正己酯发生酰化反应得到对硝基苯甲脒亚胺基甲酸正己酯,收率96.7%.得到的正己酯经还原反应得到对氨基苯甲脒亚胺基甲酸正己酯,收率85.3%.最后与氯化氢成盐得对氨基苯甲脒盐酸盐,收率高达99.2%.终产物经1 H NMR和ESI-MS进行表征.展开更多
Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a ph...Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a phosgene alternative has attracted extensive attention because of the importance of carbamates in organic synthesis and in the pharmaceutical and agrochemical industries.In recent decades,many multicomponent reaction strategies have been designed for constructing different types of organic carbamate molecules.Most of these methods rely on the in situ generation of carbamate anions from CO_(2) and amines,followed by reactions with other coupling partners.Synthetic strategies for acyclic carbamates include nucleophile‐electrophile coupling,nucleo‐phile‐nucleophile oxidative coupling,difunctionalization of unsaturated hydrocarbons,and C–H bond functionalization.Strategies for the synthesizing cyclic carbamates include carboxylative cyclization of in situ‐generated unsaturated amines and difunctionalization of unsaturated amines with CO_(2) and other electrophilic reagents.This review summarizes the recent advances in the synthesis of organic carbamates from CO_(2) using different multicomponent reaction strategies.Future perspectives and challenges in the incorporation of CO_(2) into carbamates are also presented.展开更多
A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the ato...A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.展开更多
In this study,the quasi-static ebulliometric method was used to measure both of the vapor pressures of methyl N-phenyl carbamate(MPC),and the isobaric vapor–liquid equilibrium(VLE) data of the aniline and MPC binary ...In this study,the quasi-static ebulliometric method was used to measure both of the vapor pressures of methyl N-phenyl carbamate(MPC),and the isobaric vapor–liquid equilibrium(VLE) data of the aniline and MPC binary system.The measured vapor pressure data of MPC,at different temperature ranging from 369.60 to 389.54 K,fitted well with the Antoine equation.The VLE data for the aniline and MPC system at(2.00,4.00,6.00,7.00 and 8.00) k Pa were correlated by both of nonrandom two-liquid(NRTL) and Wilson models.The parameters of the two models were obtained by regressing the experimental data,with the absolute temperature deviations of 0.54 K and 0.53 K,respectively.The relative volatility of the binary system calculated was all far more than 1,which gives the conclusion that the high purity MPC can be separated from aniline and MPC binary system by rectification or distillation technology.展开更多
Toluene-2,4-bisurea (TBU) is an important intermediate for urea route to dimethyl toluene-2,4-dicarbamate and the study on TBU synthesis via the reaction of 2,4-toluene diamine (TDA) and urea is of great significance....Toluene-2,4-bisurea (TBU) is an important intermediate for urea route to dimethyl toluene-2,4-dicarbamate and the study on TBU synthesis via the reaction of 2,4-toluene diamine (TDA) and urea is of great significance. Firstly, thermodynamic analysis shows that the reaction is exothermic and a high equilibrium conversion of TDA is expected due to its large reaction equilibrium constant. Secondly, under the suitable reaction conditions, 130 °C, 7 h, and molar ratio of TDA/zinc acetate/urea/sulfolane 1/0.05/3.5/10, TDA conversion is 54.3%, and TBU yield and selectivity are 39.8% and 73.3% respectively. Lastly, the synthesis of TBU is a 1st order reaction with respect to TDA and the reaction kinetics model is established. This work will provide useful information for commercializing the urea route to toluene-2,4-dicarbamate (TDC).展开更多
The uncatalyzed reaction of p-tolyl isocyanate(p-TI)with water in N,N-dimethylformamide(DMF)was investigated by high performance liquid chromatography(HPLC).The reactions were carried out at different temperatures fro...The uncatalyzed reaction of p-tolyl isocyanate(p-TI)with water in N,N-dimethylformamide(DMF)was investigated by high performance liquid chromatography(HPLC).The reactions were carried out at different temperatures from 293 K to 323 K,using various molar ratios of water to p-TI.DMF,as a special amide,was proved to be an efficient catalyst for water–isocyanate reaction.Under the reaction conditions in this study,substituted urea was the only final product observed.An appreciable amount of intermediate p-toluidine was detected.Concentrations of the isocyanate group as well as the amine and urea were determined as a function of time.New kinetic equations were deduced for each of the substance on the basis of a multistep mechanism,instead of a simple second order reaction as usual.Kinetic constants were calculated using the software MATLAB.Furthermore,the effects of temperature and concentrations of reactants on the reaction rate and amine content were discussed.The activation energy of each step was also determined.展开更多
2-Methyl-4-methoxyaniline (MMA) was synthesized by one-pot method through the hydrogenation and Bamberger rearrangement of o-nitrotoluene in methanol using acidic ionic liquid and 3% Pt/C as catalyst system. The eff...2-Methyl-4-methoxyaniline (MMA) was synthesized by one-pot method through the hydrogenation and Bamberger rearrangement of o-nitrotoluene in methanol using acidic ionic liquid and 3% Pt/C as catalyst system. The effects of ionic liquid type, dosage of ionic liquid and 3% Pt/C, reaction temperature and reaction pressure on o-nitrotoluene conversion and MMA selectivity were investigated. The results indicated that the imidazolium-based acidic ionic liquid which contains SO3H-functionalized cation showed higher selectivity to MMA than other acidic ionic liquids used in this work. Using 1-(propyl-3-sulfonate)-3-methylimidazolium hydrosulfate ([HSO3-pmim][HSO4]) as the acid catalyst, the selectivity to MMA was as high as 67.6% at 97.8% of o-nitrotoluene conversion. As 3% Pt/C increased from 0.01 g to 0.025 g, the selectivity to MMA decreased from 73.4% to 62.5%, because of the hydrogenation of intermediate o-methyl-phenylhydroxylamine to o-toluidine becoming more dominant. An increase in hydrogen pressure also had obviously dramatic effect in lowering the MMA selectivity. After easy separation from the products, the catalyst system could be reused at least 3 times.展开更多
文摘为了降低对氨基苯甲脒亚胺基甲酸正己酯盐酸盐的合成成本,以对硝基苯甲醛为起始原料,与盐酸羟胺在三氯化铁的催化下反应生成对硝基苯腈,收率75%.硝基苯腈与氯化铵发生成脒反应生成对硝基苯甲脒,收率63.6%.它在碱性条件下与氯甲酸正己酯发生酰化反应得到对硝基苯甲脒亚胺基甲酸正己酯,收率96.7%.得到的正己酯经还原反应得到对氨基苯甲脒亚胺基甲酸正己酯,收率85.3%.最后与氯化氢成盐得对氨基苯甲脒盐酸盐,收率高达99.2%.终产物经1 H NMR和ESI-MS进行表征.
文摘Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a phosgene alternative has attracted extensive attention because of the importance of carbamates in organic synthesis and in the pharmaceutical and agrochemical industries.In recent decades,many multicomponent reaction strategies have been designed for constructing different types of organic carbamate molecules.Most of these methods rely on the in situ generation of carbamate anions from CO_(2) and amines,followed by reactions with other coupling partners.Synthetic strategies for acyclic carbamates include nucleophile‐electrophile coupling,nucleo‐phile‐nucleophile oxidative coupling,difunctionalization of unsaturated hydrocarbons,and C–H bond functionalization.Strategies for the synthesizing cyclic carbamates include carboxylative cyclization of in situ‐generated unsaturated amines and difunctionalization of unsaturated amines with CO_(2) and other electrophilic reagents.This review summarizes the recent advances in the synthesis of organic carbamates from CO_(2) using different multicomponent reaction strategies.Future perspectives and challenges in the incorporation of CO_(2) into carbamates are also presented.
文摘A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.
基金Supported by the National Key Technology R&D Program(2013BAC11B03)the National Natural Science Foundation of China(21206180,21406245,21476244)
文摘In this study,the quasi-static ebulliometric method was used to measure both of the vapor pressures of methyl N-phenyl carbamate(MPC),and the isobaric vapor–liquid equilibrium(VLE) data of the aniline and MPC binary system.The measured vapor pressure data of MPC,at different temperature ranging from 369.60 to 389.54 K,fitted well with the Antoine equation.The VLE data for the aniline and MPC system at(2.00,4.00,6.00,7.00 and 8.00) k Pa were correlated by both of nonrandom two-liquid(NRTL) and Wilson models.The parameters of the two models were obtained by regressing the experimental data,with the absolute temperature deviations of 0.54 K and 0.53 K,respectively.The relative volatility of the binary system calculated was all far more than 1,which gives the conclusion that the high purity MPC can be separated from aniline and MPC binary system by rectification or distillation technology.
基金Supported by the National Natural Science Foundation of China (20976035, 21076059) the Natural Science Foundation of Hebei Province (B2010000019)
文摘Toluene-2,4-bisurea (TBU) is an important intermediate for urea route to dimethyl toluene-2,4-dicarbamate and the study on TBU synthesis via the reaction of 2,4-toluene diamine (TDA) and urea is of great significance. Firstly, thermodynamic analysis shows that the reaction is exothermic and a high equilibrium conversion of TDA is expected due to its large reaction equilibrium constant. Secondly, under the suitable reaction conditions, 130 °C, 7 h, and molar ratio of TDA/zinc acetate/urea/sulfolane 1/0.05/3.5/10, TDA conversion is 54.3%, and TBU yield and selectivity are 39.8% and 73.3% respectively. Lastly, the synthesis of TBU is a 1st order reaction with respect to TDA and the reaction kinetics model is established. This work will provide useful information for commercializing the urea route to toluene-2,4-dicarbamate (TDC).
基金Supported by the Key Science and Technology Innovation Team of Zhejiang Province(2011R50007)
文摘The uncatalyzed reaction of p-tolyl isocyanate(p-TI)with water in N,N-dimethylformamide(DMF)was investigated by high performance liquid chromatography(HPLC).The reactions were carried out at different temperatures from 293 K to 323 K,using various molar ratios of water to p-TI.DMF,as a special amide,was proved to be an efficient catalyst for water–isocyanate reaction.Under the reaction conditions in this study,substituted urea was the only final product observed.An appreciable amount of intermediate p-toluidine was detected.Concentrations of the isocyanate group as well as the amine and urea were determined as a function of time.New kinetic equations were deduced for each of the substance on the basis of a multistep mechanism,instead of a simple second order reaction as usual.Kinetic constants were calculated using the software MATLAB.Furthermore,the effects of temperature and concentrations of reactants on the reaction rate and amine content were discussed.The activation energy of each step was also determined.
基金Supported by the National Natural Science Foundation of China (21106134) and the Natural Science Foundation of Zlaejlang Province (Y4100671).
文摘2-Methyl-4-methoxyaniline (MMA) was synthesized by one-pot method through the hydrogenation and Bamberger rearrangement of o-nitrotoluene in methanol using acidic ionic liquid and 3% Pt/C as catalyst system. The effects of ionic liquid type, dosage of ionic liquid and 3% Pt/C, reaction temperature and reaction pressure on o-nitrotoluene conversion and MMA selectivity were investigated. The results indicated that the imidazolium-based acidic ionic liquid which contains SO3H-functionalized cation showed higher selectivity to MMA than other acidic ionic liquids used in this work. Using 1-(propyl-3-sulfonate)-3-methylimidazolium hydrosulfate ([HSO3-pmim][HSO4]) as the acid catalyst, the selectivity to MMA was as high as 67.6% at 97.8% of o-nitrotoluene conversion. As 3% Pt/C increased from 0.01 g to 0.025 g, the selectivity to MMA decreased from 73.4% to 62.5%, because of the hydrogenation of intermediate o-methyl-phenylhydroxylamine to o-toluidine becoming more dominant. An increase in hydrogen pressure also had obviously dramatic effect in lowering the MMA selectivity. After easy separation from the products, the catalyst system could be reused at least 3 times.