SAPO-34 was synthesized with n-butylamine(BA) as a template for the first time.Crystallization temperature and initial Si amount were important factors leading to successful syntheses.Lamellar AlPO-kanemite tends to...SAPO-34 was synthesized with n-butylamine(BA) as a template for the first time.Crystallization temperature and initial Si amount were important factors leading to successful syntheses.Lamellar AlPO-kanemite tends to form as the major phase or as an impurity of SAPO-34 at lower crystallization temperatures,though a higher initial Si amount may offer a positive effect on the crystallization of SAPO-34 that mitigates the low temperature.Higher temperature(240℃) can effectively suppress the generation of lamellar materials and allow the synthesis of pure SAPO-34 with a wider range of Si incorporation.The crystallization processes at 200 and 240℃ were investigated and compared.We used the aminothermal method to synthesize SAPO-34-BA at 240℃ and also found n-propylamine is a suitable template for the synthesis of SAPO-34.The SAPO-34-BA products were characterized by many techniques.SAPO-34-BA has good thermal stability,crystallinity and porosity.BA remained intact in the crystals with ~1.8 BA molecule per chabazite cage.The catalytic performance of SAPO-34 was tested in the methanol amination reaction,which showed high methanol conversion and selectivity for methylamine plus dimethylamine under the conditions investigated,suggesting that this material is a good candidate for the synthesis of methylamines.展开更多
Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a ph...Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a phosgene alternative has attracted extensive attention because of the importance of carbamates in organic synthesis and in the pharmaceutical and agrochemical industries.In recent decades,many multicomponent reaction strategies have been designed for constructing different types of organic carbamate molecules.Most of these methods rely on the in situ generation of carbamate anions from CO_(2) and amines,followed by reactions with other coupling partners.Synthetic strategies for acyclic carbamates include nucleophile‐electrophile coupling,nucleo‐phile‐nucleophile oxidative coupling,difunctionalization of unsaturated hydrocarbons,and C–H bond functionalization.Strategies for the synthesizing cyclic carbamates include carboxylative cyclization of in situ‐generated unsaturated amines and difunctionalization of unsaturated amines with CO_(2) and other electrophilic reagents.This review summarizes the recent advances in the synthesis of organic carbamates from CO_(2) using different multicomponent reaction strategies.Future perspectives and challenges in the incorporation of CO_(2) into carbamates are also presented.展开更多
A full account of the novel and flexible approach to hydroxylated 8-azabicyclo[3,2,1]octan-3-ones and 9-azabicyclo[3,3,1] nonan-3-ones is presented. Using keto-lactams as the starting materials, this two-step method c...A full account of the novel and flexible approach to hydroxylated 8-azabicyclo[3,2,1]octan-3-ones and 9-azabicyclo[3,3,1] nonan-3-ones is presented. Using keto-lactams as the starting materials, this two-step method consists of silyl enol ether for mation with TBDMSOTf, lactam activation with Tf20/DTBMP, and halide-promoted cyclization. Radical dechlorination of the resulting 1-halotropan-3-ones led to the corresponding hydroxylated tropan-3-ones, which can be hydrogenated to yield 3ct,613-dihydroxytropanes. Starting from optically active keto-lactams, the method has been applied to the enantioselective syntheses of (+)-(1S,3S,5R,6S)-pervilleine C (6), (+)-(1S,3R,5S,6R)-valeroidine (3), (+)-(1S,3S,5R,6S)-dibenzoyloxytropane (8) and (+)-(1S,3S,5R,6S)-merredissine (9).展开更多
A newly-developed polyamide supported Raney Ni catalyst, which is suitable for use in fix-bed reactions with high selectivity, was studied in this paper. Selective hydrogenation of acetone to isopropanol was chosen as...A newly-developed polyamide supported Raney Ni catalyst, which is suitable for use in fix-bed reactions with high selectivity, was studied in this paper. Selective hydrogenation of acetone to isopropanol was chosen as a probe reaction. It has been found that clean preparation of isopropanol could be achieved, that is to say, the two main byproducts(isopropyl ether and methyl-iso-butyl carbinol) could be eliminated with the newly-developed polyamide supported Raney Ni catalyst. The elimination of these side reactions was attributed to the adsorption effect of polyamide support and a model was proposed. The proposed model was further proved by hydroamination reaction of acetone. According to this model, catalyst support can play an important role in chemical reactions. Different products could be produced when different catalyst support is used, the main reaction and side reactions can even be reversed sometimes when the chemicals, active component of catalyst and reaction condition are the same. This model could help to improve catalytic selectivity of many Raney metal catalysts used routinely in chemical and oil refining industry, and is also useful for hydrogenation reactions in pharmaceutical and food industry.展开更多
基金supported by the National Natural Science Foundation of China(21676262,21476228,21506207)the Key Research Program of Frontier Sciences of CAS(QYZDB-SSW-JSC040)~~
文摘SAPO-34 was synthesized with n-butylamine(BA) as a template for the first time.Crystallization temperature and initial Si amount were important factors leading to successful syntheses.Lamellar AlPO-kanemite tends to form as the major phase or as an impurity of SAPO-34 at lower crystallization temperatures,though a higher initial Si amount may offer a positive effect on the crystallization of SAPO-34 that mitigates the low temperature.Higher temperature(240℃) can effectively suppress the generation of lamellar materials and allow the synthesis of pure SAPO-34 with a wider range of Si incorporation.The crystallization processes at 200 and 240℃ were investigated and compared.We used the aminothermal method to synthesize SAPO-34-BA at 240℃ and also found n-propylamine is a suitable template for the synthesis of SAPO-34.The SAPO-34-BA products were characterized by many techniques.SAPO-34-BA has good thermal stability,crystallinity and porosity.BA remained intact in the crystals with ~1.8 BA molecule per chabazite cage.The catalytic performance of SAPO-34 was tested in the methanol amination reaction,which showed high methanol conversion and selectivity for methylamine plus dimethylamine under the conditions investigated,suggesting that this material is a good candidate for the synthesis of methylamines.
文摘Carbon dioxide(CO_(2)) is the main greenhouse gas and also an ideal C1 feedstock in organic synthesis because it is abundant,nontoxic,nonflammable,and renewable.The synthesis of organic carbamates using CO_(2) as a phosgene alternative has attracted extensive attention because of the importance of carbamates in organic synthesis and in the pharmaceutical and agrochemical industries.In recent decades,many multicomponent reaction strategies have been designed for constructing different types of organic carbamate molecules.Most of these methods rely on the in situ generation of carbamate anions from CO_(2) and amines,followed by reactions with other coupling partners.Synthetic strategies for acyclic carbamates include nucleophile‐electrophile coupling,nucleo‐phile‐nucleophile oxidative coupling,difunctionalization of unsaturated hydrocarbons,and C–H bond functionalization.Strategies for the synthesizing cyclic carbamates include carboxylative cyclization of in situ‐generated unsaturated amines and difunctionalization of unsaturated amines with CO_(2) and other electrophilic reagents.This review summarizes the recent advances in the synthesis of organic carbamates from CO_(2) using different multicomponent reaction strategies.Future perspectives and challenges in the incorporation of CO_(2) into carbamates are also presented.
基金the National Basic Research Program of China(973 Program,2010CB833200)the National Natural Science Foundation of China(21072160,21332007)the Program for Changjiang Scholars and Innovative Research Team at the University of the MOE for financial support
文摘A full account of the novel and flexible approach to hydroxylated 8-azabicyclo[3,2,1]octan-3-ones and 9-azabicyclo[3,3,1] nonan-3-ones is presented. Using keto-lactams as the starting materials, this two-step method consists of silyl enol ether for mation with TBDMSOTf, lactam activation with Tf20/DTBMP, and halide-promoted cyclization. Radical dechlorination of the resulting 1-halotropan-3-ones led to the corresponding hydroxylated tropan-3-ones, which can be hydrogenated to yield 3ct,613-dihydroxytropanes. Starting from optically active keto-lactams, the method has been applied to the enantioselective syntheses of (+)-(1S,3S,5R,6S)-pervilleine C (6), (+)-(1S,3R,5S,6R)-valeroidine (3), (+)-(1S,3S,5R,6S)-dibenzoyloxytropane (8) and (+)-(1S,3S,5R,6S)-merredissine (9).
文摘A newly-developed polyamide supported Raney Ni catalyst, which is suitable for use in fix-bed reactions with high selectivity, was studied in this paper. Selective hydrogenation of acetone to isopropanol was chosen as a probe reaction. It has been found that clean preparation of isopropanol could be achieved, that is to say, the two main byproducts(isopropyl ether and methyl-iso-butyl carbinol) could be eliminated with the newly-developed polyamide supported Raney Ni catalyst. The elimination of these side reactions was attributed to the adsorption effect of polyamide support and a model was proposed. The proposed model was further proved by hydroamination reaction of acetone. According to this model, catalyst support can play an important role in chemical reactions. Different products could be produced when different catalyst support is used, the main reaction and side reactions can even be reversed sometimes when the chemicals, active component of catalyst and reaction condition are the same. This model could help to improve catalytic selectivity of many Raney metal catalysts used routinely in chemical and oil refining industry, and is also useful for hydrogenation reactions in pharmaceutical and food industry.