In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solut...In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solution was programmed and then verified by comparison with the obtained analytical solution of a special case. Based on the results of some computations and comparisons with the 1-D homogeneous consolidation (by Terzaghi) and the 1-D non-linear consolidation theory (by Davis et al.) of soft clay, some diagrams were prepared and the relevant consolidation behavior of non-homogeneous soils is discussed. It was shown that the result obtained differs greatly from Terzaghi’s theory and that of the non-linear consolidation theory when the coefficients of permeability and compressibility vary greatly.展开更多
最近几年,随着宝钢、石洞口电厂等大型企业,虹桥宾馆、沪办大楼等高层建筑的兴建,长达60余米的预制钢筋砼桩、钢管桩和 H 型钢桩已经投入应用,从远景发展来看要建造超过50层的高楼,地基承载能力要求达到500~600KPa 以上,并要严格控制...最近几年,随着宝钢、石洞口电厂等大型企业,虹桥宾馆、沪办大楼等高层建筑的兴建,长达60余米的预制钢筋砼桩、钢管桩和 H 型钢桩已经投入应用,从远景发展来看要建造超过50层的高楼,地基承载能力要求达到500~600KPa 以上,并要严格控制建筑物的下沉量。展开更多
As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly i...As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.展开更多
基金Project (No. 20030335027) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solution was programmed and then verified by comparison with the obtained analytical solution of a special case. Based on the results of some computations and comparisons with the 1-D homogeneous consolidation (by Terzaghi) and the 1-D non-linear consolidation theory (by Davis et al.) of soft clay, some diagrams were prepared and the relevant consolidation behavior of non-homogeneous soils is discussed. It was shown that the result obtained differs greatly from Terzaghi’s theory and that of the non-linear consolidation theory when the coefficients of permeability and compressibility vary greatly.
基金Project(B15020060)supported by Fundamental Research Funds for the Central Universities,China
文摘As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.