Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study o...Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.展开更多
This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range o...This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant nos. 50639030 and 50979070) and the 863 Program of China (Grant no. 2006AA09Z348).
文摘Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.
基金Supported by the High Technology Research and Development Programme of China (No.2002AA421160) and the National Natural Science Foundation of China (No.50375008).
文摘This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.