Flow behaviors of spray forming low solvus high refractory (LSHR) alloy were investigated using hot compression tests performed on a Gleeble?3500 thermal mechanical simulator at temperatures of 1020?1150 °C and s...Flow behaviors of spray forming low solvus high refractory (LSHR) alloy were investigated using hot compression tests performed on a Gleeble?3500 thermal mechanical simulator at temperatures of 1020?1150 °C and strain rates of 0.0003?1.0 s?1. The constitutive equation was established, power dissipation (η) maps and hot processing maps were plotted. The microstructure evolution and dislocation distribution of domains with different values of η in power dissipation maps were also observed. The results show that the flow stress increases with decreasing temperature and increasing strain rate. The activation energy of the spray forming LSHR alloy is 1243.86 kJ/mol. When the value of η is 0.36 at the strain of 0.5, the domain in the processing map shows characteristics of typical dynamic recrystallization (DRX) and low dislocation density. According to the microstructure evolution and processing maps, the optimum processing condition for good hot workability of spray forming LSHR alloy can be summed up as:temperature range 1110?1150 °C; strain rate range 0.01?0.3 s?1.展开更多
Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and...Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper, artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters.展开更多
To explore the influence of double liquid quenching on the cutting performance of the 7A09 aluminum alloy,quasi-static compression and dynamic impact tests were carried out on the 7A09 aluminum alloy after double liqu...To explore the influence of double liquid quenching on the cutting performance of the 7A09 aluminum alloy,quasi-static compression and dynamic impact tests were carried out on the 7A09 aluminum alloy after double liquid quenching using an MTS810.23 universal testing machine and split-Hopkinson pressure bar(SHPB).The experimental data were fitted to obtain the Johnson–Cook constitutive model parameters of the alloy.Simulations of the machining process were carried out using the Deform-3D finite element software.The results showed that the rheological stress increased with the increase in strain rate and the decrease in temperature.The increase in the cutting speed and feed caused the cutting temperature to rise sharply,whereas the influence of the cutting amount on the cutting temperature was weak.Because of the presence of chip nodules,there was extremum in the cutting force vs cutting speed curves.The increase in the feed and cutting depth increased the cutting area Ac,so the cutting force also increased.The simulation results were verified by experiments.The simulation predictions were in good agreement with the test values,and the cutting force and temperature variations with the cutting parameters were the same.Thus,the correctness of the 7A09 aluminum alloy finite element model was verified.展开更多
To increase the machine accuracy by improving the stiffness of bearings,a preload was applied to bearings.A variable preload technology was necessary to perform machining processes in both low and high speed regions.A...To increase the machine accuracy by improving the stiffness of bearings,a preload was applied to bearings.A variable preload technology was necessary to perform machining processes in both low and high speed regions.An automatic variable preload device was fabricated using an eccentric mass.By installing the fabricated device on a spindle,the effect of the automatic variable preload device on the performance of the spindle was analyzed.In the results of the vibration measurement of the spindle,the vibration is increased by 20%-37% according to measurement points at the maximum rotation speed of 5 000 r/min.And,in the results of the noise measurement of the spindle,the spindle rotation speed is increased by about 1.9% and 1.5% at the front and side of the spindle,respectively.Based on the results of this analysis,an improved method that reduces such effects on the performance of the spindle is proposed.展开更多
The performance of a two-state quantum engine under different conditions is analyzed. It is shown that the efficiency of the quantum engine can be enhanced by superposing the eigenstates at the beginning of the cycle....The performance of a two-state quantum engine under different conditions is analyzed. It is shown that the efficiency of the quantum engine can be enhanced by superposing the eigenstates at the beginning of the cycle. By employing the finite-time movement of the potential wall, the power output of the quantum engine as well as the efficiency at the maximum power out- put (EMP) can be obtained. A generalized potential is adopted to describe a class of two-level quantum engines in a unified way. The results obtained show clearly that the performances of these engines depend on the external potential, the geometric configuration of the quantum engines, and the superposition effect. Moreow^r, it is found that the superposition effect will en- large the optimally operating region of quantum engines.展开更多
基金Project(51301143)supported by the National Natural Science Foundation of ChinaProject(2014M560727)supported by the National Postdoctoral Foundation of China+1 种基金Project(2015GZ0228)supported by the Sichuan Province Science-Technology Support Plan,ChinaProject(2682014CX001)supported by the Science and Technology Innovation Project of SWJTU University,China
文摘Flow behaviors of spray forming low solvus high refractory (LSHR) alloy were investigated using hot compression tests performed on a Gleeble?3500 thermal mechanical simulator at temperatures of 1020?1150 °C and strain rates of 0.0003?1.0 s?1. The constitutive equation was established, power dissipation (η) maps and hot processing maps were plotted. The microstructure evolution and dislocation distribution of domains with different values of η in power dissipation maps were also observed. The results show that the flow stress increases with decreasing temperature and increasing strain rate. The activation energy of the spray forming LSHR alloy is 1243.86 kJ/mol. When the value of η is 0.36 at the strain of 0.5, the domain in the processing map shows characteristics of typical dynamic recrystallization (DRX) and low dislocation density. According to the microstructure evolution and processing maps, the optimum processing condition for good hot workability of spray forming LSHR alloy can be summed up as:temperature range 1110?1150 °C; strain rate range 0.01?0.3 s?1.
基金Project supported by the National Natural Science Foundation of China (Nos. 50575128 and 50775128)the Outstanding Young Scientist Foundation of Shandong Province (No. 2005BS05004), China
文摘Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper, artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of ChinaProject(2019GHY112068)supported by the Key Research and Development of Shandong,China
文摘To explore the influence of double liquid quenching on the cutting performance of the 7A09 aluminum alloy,quasi-static compression and dynamic impact tests were carried out on the 7A09 aluminum alloy after double liquid quenching using an MTS810.23 universal testing machine and split-Hopkinson pressure bar(SHPB).The experimental data were fitted to obtain the Johnson–Cook constitutive model parameters of the alloy.Simulations of the machining process were carried out using the Deform-3D finite element software.The results showed that the rheological stress increased with the increase in strain rate and the decrease in temperature.The increase in the cutting speed and feed caused the cutting temperature to rise sharply,whereas the influence of the cutting amount on the cutting temperature was weak.Because of the presence of chip nodules,there was extremum in the cutting force vs cutting speed curves.The increase in the feed and cutting depth increased the cutting area Ac,so the cutting force also increased.The simulation results were verified by experiments.The simulation predictions were in good agreement with the test values,and the cutting force and temperature variations with the cutting parameters were the same.Thus,the correctness of the 7A09 aluminum alloy finite element model was verified.
基金Project(2011-0027035) supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘To increase the machine accuracy by improving the stiffness of bearings,a preload was applied to bearings.A variable preload technology was necessary to perform machining processes in both low and high speed regions.An automatic variable preload device was fabricated using an eccentric mass.By installing the fabricated device on a spindle,the effect of the automatic variable preload device on the performance of the spindle was analyzed.In the results of the vibration measurement of the spindle,the vibration is increased by 20%-37% according to measurement points at the maximum rotation speed of 5 000 r/min.And,in the results of the noise measurement of the spindle,the spindle rotation speed is increased by about 1.9% and 1.5% at the front and side of the spindle,respectively.Based on the results of this analysis,an improved method that reduces such effects on the performance of the spindle is proposed.
基金supported by the National Natural Science Foundation of China(Grant No.11005041)the Program for Prominent Young Talents in Fujian Province University(Grant No.JA12001)+2 种基金the Natural Science Foundation of Fujian Province(Grant Nos.2010J05007 and 2011J01012)the Fundamental Research Funds for the Central Universities(Grant No.JB-SJ1005)the Science Research Fund of Huaqiao University(Grant No.09BS510)
文摘The performance of a two-state quantum engine under different conditions is analyzed. It is shown that the efficiency of the quantum engine can be enhanced by superposing the eigenstates at the beginning of the cycle. By employing the finite-time movement of the potential wall, the power output of the quantum engine as well as the efficiency at the maximum power out- put (EMP) can be obtained. A generalized potential is adopted to describe a class of two-level quantum engines in a unified way. The results obtained show clearly that the performances of these engines depend on the external potential, the geometric configuration of the quantum engines, and the superposition effect. Moreow^r, it is found that the superposition effect will en- large the optimally operating region of quantum engines.