In order to overcome hypoxia induced sickness, a stable source of anti-hypoxia functional agents, Sehizophyllum commune fermented broth has been developed in this study. Animal experiments were conducted to examine it...In order to overcome hypoxia induced sickness, a stable source of anti-hypoxia functional agents, Sehizophyllum commune fermented broth has been developed in this study. Animal experiments were conducted to examine its anti-hypoxia activities and possible mechanisms involved. The acute hypoxic experiment showed that Sehizophyllum commune fermented broth could significantly prolong the survival time of mice. The underlying mechanisms were associated with improved energy metabolism based on a study carried out in rats exposed to a low pressure chamber simulating the low pressure environment of 8 000 m altitude. It was concluded that the Schizophyllum commune fermented broth was an effective anti-hypoxia functional agent and could be greatly bene- ficial to those living and working at high altitudes, such as people who reside in the reconstruction regions of Yushu.展开更多
Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fung...Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fungi in the presence of optimal abiotic conditions. The objective of this study was to assess the effects of different soil managements, in terms of soil amendment types and frequency of application, on fungistasis. For this purpose, a microcosm experiment was performed by conditioning a soil with frequent applications of organic matter with contrasting biochemical quality (i. e., glucose, alfalfa straw and wheat straw). Thereafter, the fungistasis response was assessed on four fungi (Aspergillus niger, Botrytis cinerea, Pyrenoehaeta lycopersici and Trichoderma harzianum). Conditioned soils were characterized by measuring microbial activity (soil respiration) and functional diversity using the BIOLOG EcoPlatesTM method. Results showed that irrespective of the fungal species and amendment types, frequent applications of organic matter reduced fungistasis relief and shortened the time required for fungistasis restoration. The frequent addition of easily decomposable organic compounds enhanced soil respiration and its specific catabolic capabilities. This study demonstrated that frequent applications of organic matter affected soil fungistasis likely as a result of higher microbial activity and functional diversity.展开更多
基金National Nature Science Foundation of China(No.31171662)"973"National Key Basic Research and Development Program(No.2012CB518202)Project of Qinghai Development of Science and Technology(No.2011-N-150)
文摘In order to overcome hypoxia induced sickness, a stable source of anti-hypoxia functional agents, Sehizophyllum commune fermented broth has been developed in this study. Animal experiments were conducted to examine its anti-hypoxia activities and possible mechanisms involved. The acute hypoxic experiment showed that Sehizophyllum commune fermented broth could significantly prolong the survival time of mice. The underlying mechanisms were associated with improved energy metabolism based on a study carried out in rats exposed to a low pressure chamber simulating the low pressure environment of 8 000 m altitude. It was concluded that the Schizophyllum commune fermented broth was an effective anti-hypoxia functional agent and could be greatly bene- ficial to those living and working at high altitudes, such as people who reside in the reconstruction regions of Yushu.
文摘Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fungi in the presence of optimal abiotic conditions. The objective of this study was to assess the effects of different soil managements, in terms of soil amendment types and frequency of application, on fungistasis. For this purpose, a microcosm experiment was performed by conditioning a soil with frequent applications of organic matter with contrasting biochemical quality (i. e., glucose, alfalfa straw and wheat straw). Thereafter, the fungistasis response was assessed on four fungi (Aspergillus niger, Botrytis cinerea, Pyrenoehaeta lycopersici and Trichoderma harzianum). Conditioned soils were characterized by measuring microbial activity (soil respiration) and functional diversity using the BIOLOG EcoPlatesTM method. Results showed that irrespective of the fungal species and amendment types, frequent applications of organic matter reduced fungistasis relief and shortened the time required for fungistasis restoration. The frequent addition of easily decomposable organic compounds enhanced soil respiration and its specific catabolic capabilities. This study demonstrated that frequent applications of organic matter affected soil fungistasis likely as a result of higher microbial activity and functional diversity.