In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calcula...In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calculation of phase diagrams(CALPHAD)and experimental measurements.High GFA potentiality of two alloy series,specifically Mg_(96-x)Zn_xAg_(4)and Mg_(94-x)Zn_xAg_6(x=17,20,23,26,29,32,35),was predicted theoretically and then substantiated through experimental testing.X-ray diffraction(XRD)and differential scanning calorimetry(DSC)techniques were used to evaluate the crystallinity,GFA,and crystallization characteristics of these alloys.The results showed that compositions between Mg_(73)Zn_(23)Ag_(4)and Mg_(64)Zn_(32)Ag_(4)for Mg_(96-x)Zn_xAg_4,Mg_(66)Zn_(28)Ag_(6)and Mg_(63)Zn_(31)Ag_(6for)Mg_(94-x)Zn_xAg_(6)displayed a superior GFA.Notably,the GFA of the Mg_(96-x)Zn_xAg_(4)series was better than that of the Mg_(94-x)Zn_xAg_(6)series.Furthermore,the Mg_(70)Zn_(26)Ag_4,Mg_(74)Zn_(20)Ag_6,and Mg_(71)Zn_(23)Ag_(6)alloys showed acceptable corrosion rates,good cytocompatibility,and positive effects on cell proliferation.These characteristics make them suitable for applications in medical settings,potentially materials as biodegradable implants.展开更多
Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of s...Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.展开更多
The plastic flow behavior of a newly developed high ductility magnesium alloy, Mg-4Al-2Sn-Y-Nd, was investigated by hot compression from 200 to 400 ℃ with a strain rate of 1.5×10-3 to 7.5 s-1. The results reveal...The plastic flow behavior of a newly developed high ductility magnesium alloy, Mg-4Al-2Sn-Y-Nd, was investigated by hot compression from 200 to 400 ℃ with a strain rate of 1.5×10-3 to 7.5 s-1. The results reveal that the strain rate sensitivity factor (m) of the alloy is much lower than that of the AZ31 alloy, which implies that the alloy should be more suitable for processing at high strain rate. The constitutive relationship of the alloy deformed at elevated temperature was obtained by plotting the experimental data. The stress exponent of the alloy is 10.33, which reveals that climb-controlled dislocations creep is the dominated deformation mechanism. The processing-map technique was used to determine the practical processing window. The proper deformation temperature and strain rate of the cast alloy were determined as 350-400 ℃ and 0.01-0.03 s-1, respectively.展开更多
The local and global mechanical responses of gas tungsten arc welds(GTAW) of a 2219-T87 aluminum alloy were investigated with experiment and numerical simulation.Digital image correlation(DIC) was used to access t...The local and global mechanical responses of gas tungsten arc welds(GTAW) of a 2219-T87 aluminum alloy were investigated with experiment and numerical simulation.Digital image correlation(DIC) was used to access the local strain fields in transversely loaded welds and to determine the local stress-strain curves of various regions in the joint.The results show that the DIC method is efficient to acquire the local stress-strain curves but the curves of harder regions are incomplete because the stress and strain ranges are limited by the weakest region.With appropriate extrapolation,the complete local stress-strain curves were acquired and proved to be effective to predict the tensile behavior of the welded joint.During the tensile process,the fracture initiates from the weld toes owing to their plastic strain concentrations and then propagates along the fusion line,finally propagates into the partially melted zone(PMZ).展开更多
The high-temperature flow behavior of TCll/Ti-22Al-25 Nb electron beam(EB) weldments was investigated by the isothermal compression tests at the temperature of 900-1060℃ and the strain rate of 0.001-10 s-(-1).Bas...The high-temperature flow behavior of TCll/Ti-22Al-25 Nb electron beam(EB) weldments was investigated by the isothermal compression tests at the temperature of 900-1060℃ and the strain rate of 0.001-10 s-(-1).Based on the experimental data,the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature is obtained.The apparent activation energy of deformation is calculated,which decreases with increasing the strain and the value is 334 kJ/mol at strain of 0.90.The efficiency of power dissipation η changes obviously with the variation of deformation conditions.Under the strain rates of 0.01,0.1 and 1 s-(-1),the value of η increases with increasing the true strain for different deformation temperatures.While the value of η decreases with increasing the strain under the strain rates of 0.001 and 10 s-(-1).The optimum processing condition is(t(opi)=1060℃,ε(opi)=0.1 s-(-1)) with the peak efficiency of 0.51.Under this deformation,dynamic recrystallization(DRX) is observed obviously in the microstructure of welding zone.Under the condition of 1060℃ and 0.001 s-(-1),the deformation mechanism is dominated by dynamic recovery(DRV) and the value of η decreases sharply(η=0.02).The flow instability is predicted to occur since the instability parameter ξ(ε)becomes negative.The hot working process can be carried out safely in the domain with the strain rate of 0.001-0.6 s-(-1) and the temperature of 900-1060℃.展开更多
Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of A...Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.展开更多
基金the financial supports from the Shenzhen Basic Research Project,China(No.JCYJ20170815153210359)the National Natural Science Foundation of China(No.12174210)。
文摘In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calculation of phase diagrams(CALPHAD)and experimental measurements.High GFA potentiality of two alloy series,specifically Mg_(96-x)Zn_xAg_(4)and Mg_(94-x)Zn_xAg_6(x=17,20,23,26,29,32,35),was predicted theoretically and then substantiated through experimental testing.X-ray diffraction(XRD)and differential scanning calorimetry(DSC)techniques were used to evaluate the crystallinity,GFA,and crystallization characteristics of these alloys.The results showed that compositions between Mg_(73)Zn_(23)Ag_(4)and Mg_(64)Zn_(32)Ag_(4)for Mg_(96-x)Zn_xAg_4,Mg_(66)Zn_(28)Ag_(6)and Mg_(63)Zn_(31)Ag_(6for)Mg_(94-x)Zn_xAg_(6)displayed a superior GFA.Notably,the GFA of the Mg_(96-x)Zn_xAg_(4)series was better than that of the Mg_(94-x)Zn_xAg_(6)series.Furthermore,the Mg_(70)Zn_(26)Ag_4,Mg_(74)Zn_(20)Ag_6,and Mg_(71)Zn_(23)Ag_(6)alloys showed acceptable corrosion rates,good cytocompatibility,and positive effects on cell proliferation.These characteristics make them suitable for applications in medical settings,potentially materials as biodegradable implants.
基金National Natural Science Foundation of China(82274411)Science and Technology Innovation Program of Hunan Province(2022RC1021)Leading Research Project of Hunan University of Chinese Medicine(2022XJJB002).
文摘Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.
基金Project(2011BAE22B01-1)supported by the National Key Technology R&D ProgramProject(2011DFA50903)supported by the International Science&Technology Cooperation Program of China
文摘The plastic flow behavior of a newly developed high ductility magnesium alloy, Mg-4Al-2Sn-Y-Nd, was investigated by hot compression from 200 to 400 ℃ with a strain rate of 1.5×10-3 to 7.5 s-1. The results reveal that the strain rate sensitivity factor (m) of the alloy is much lower than that of the AZ31 alloy, which implies that the alloy should be more suitable for processing at high strain rate. The constitutive relationship of the alloy deformed at elevated temperature was obtained by plotting the experimental data. The stress exponent of the alloy is 10.33, which reveals that climb-controlled dislocations creep is the dominated deformation mechanism. The processing-map technique was used to determine the practical processing window. The proper deformation temperature and strain rate of the cast alloy were determined as 350-400 ℃ and 0.01-0.03 s-1, respectively.
基金Project(2012 2X04012-011)supported by the Innovation Platform for Process Modeling and Simulation of Advanced Materials Processing Technologies,China
文摘The local and global mechanical responses of gas tungsten arc welds(GTAW) of a 2219-T87 aluminum alloy were investigated with experiment and numerical simulation.Digital image correlation(DIC) was used to access the local strain fields in transversely loaded welds and to determine the local stress-strain curves of various regions in the joint.The results show that the DIC method is efficient to acquire the local stress-strain curves but the curves of harder regions are incomplete because the stress and strain ranges are limited by the weakest region.With appropriate extrapolation,the complete local stress-strain curves were acquired and proved to be effective to predict the tensile behavior of the welded joint.During the tensile process,the fracture initiates from the weld toes owing to their plastic strain concentrations and then propagates along the fusion line,finally propagates into the partially melted zone(PMZ).
基金Project(51175431)supported by the National Natural Science Foundation of China
文摘The high-temperature flow behavior of TCll/Ti-22Al-25 Nb electron beam(EB) weldments was investigated by the isothermal compression tests at the temperature of 900-1060℃ and the strain rate of 0.001-10 s-(-1).Based on the experimental data,the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature is obtained.The apparent activation energy of deformation is calculated,which decreases with increasing the strain and the value is 334 kJ/mol at strain of 0.90.The efficiency of power dissipation η changes obviously with the variation of deformation conditions.Under the strain rates of 0.01,0.1 and 1 s-(-1),the value of η increases with increasing the true strain for different deformation temperatures.While the value of η decreases with increasing the strain under the strain rates of 0.001 and 10 s-(-1).The optimum processing condition is(t(opi)=1060℃,ε(opi)=0.1 s-(-1)) with the peak efficiency of 0.51.Under this deformation,dynamic recrystallization(DRX) is observed obviously in the microstructure of welding zone.Under the condition of 1060℃ and 0.001 s-(-1),the deformation mechanism is dominated by dynamic recovery(DRV) and the value of η decreases sharply(η=0.02).The flow instability is predicted to occur since the instability parameter ξ(ε)becomes negative.The hot working process can be carried out safely in the domain with the strain rate of 0.001-0.6 s-(-1) and the temperature of 900-1060℃.
基金Project(CSTC2010AA4035)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(50504019)supported by the National Natural Science Foundation of China+1 种基金Project(CDJZR11130008)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CDJXS10130001)supported by the Chongqing University Postgraduates'Science and Innovation Fund,China
文摘Repeated unidirectional bending (RUB) was carried out to improve the texture of commercial AZ31B magnesium alloy sheets. All specimens were prepared in the rolling direction. The forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet were determined experimentally by conducting stretch-forming tests at room temperature, 100, 200 and 300 ℃ Compared with the as-received sheet, the lowest limited strain of AZ31B magnesium alloy sheet with tilted texture in the FLD increased by 79% at room temperature and 104% at 100 ℃. The texture also affected the extension of the forming limit curves (FLC) in the FLD. However, the FLCs of two kinds of sheets almost overlapped at temperature above 200 ℃. It can be concluded that the reduction of (0002) texture intensity is effective to the improvement of formability not only at room temperature but also at low-and-medium temperature. The effect of texture on FLDs becomes weak with increasing temperature.