A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning pro...A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine.展开更多
The limiting factor preventing further performance improvement of the kesterite(sulfide Cu2ZnSnS4(CZTS),selenide Cu2ZnSnS4(CZTSe),and their alloying Cu2Zn Sn(S,Se)4(CZTSSe))thin film solar cells is the large open-circ...The limiting factor preventing further performance improvement of the kesterite(sulfide Cu2ZnSnS4(CZTS),selenide Cu2ZnSnS4(CZTSe),and their alloying Cu2Zn Sn(S,Se)4(CZTSSe))thin film solar cells is the large open-circuit voltage deficit(Voc,def)issue,which is 0.345 V for the current world record device with an efficiency of 12.6%.In this study,SnCl4 and Sn Cl2·2H2O were respectively used as tin precursor to investigate the Voc,def issue of dimethyl sulfoxide(DMSO)solution processed CZTSSe solar cells.Different complexations of tin compounds with thiourea(Tu)and DMSO resulted in different reaction pathways from the solution to the absorber material and thus dramatic differences in photovoltaic performance.The coordination of Sn^2+with Tu led to the formation of SnS,ZnS and Cu2S in the precursor film,which converted to selenides first and then fused to CZTSSe,resulting in poor film quality and device performance.The highest efficiency obtained from this film was 8.84%with a Voc,def of 0.391 V.The coordination of Sn4+with DMSO facilitated direct formation of CZTS phase in the precursor film which directly converted to CZTSSe during selenization,resulting in compositional uniform absorber and high device performance.A device with an active area efficiency of 12.2%and a Voc,def of 0.344 V was achieved from the Sn^4+solution processed absorber.Furthermore,CZTSSe/Cd S heterojunction heat treatment(JHT)significantly improved the performance of the Sn^4+device but had slightly negative effect on the Sn2+device.A champion CZTSSe solar cell with a total area efficiency of 12.4%(active area efficiency of 13.6%)and a low Voc,def of 0.297 V was achieved from the Sn^4+solution.Our results demonstrate the preformed uniform CZTSSe phase enabled by Sn4+precursor is the key for the highly efficient CZTSSe absorber.The lowest Voc,def and high efficiency achieved here shines new light on the future of CZTSSe solar cell.展开更多
基金Project(51305328)supported by the National Natural Science Foundation of ChinaProject(2012AA041803)supported by the NationalHigh Technology R&D Program of China+1 种基金Project(GZKF-201210)supported by the Open Fund of State Key Laboratory of Fluid Power Transmission and Control of Zhejiang University,ChinaProject(2013M532031)supported by the China Postdoctoral Science Foundation
文摘A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine.
基金supported primarily by the National Natural Science Foundation of China(21571106 and U1902218)support from the Postgraduate Research and Practice Innovation Program of Jiangsu Provincesupport from the Molecular Analysis Facility。
文摘The limiting factor preventing further performance improvement of the kesterite(sulfide Cu2ZnSnS4(CZTS),selenide Cu2ZnSnS4(CZTSe),and their alloying Cu2Zn Sn(S,Se)4(CZTSSe))thin film solar cells is the large open-circuit voltage deficit(Voc,def)issue,which is 0.345 V for the current world record device with an efficiency of 12.6%.In this study,SnCl4 and Sn Cl2·2H2O were respectively used as tin precursor to investigate the Voc,def issue of dimethyl sulfoxide(DMSO)solution processed CZTSSe solar cells.Different complexations of tin compounds with thiourea(Tu)and DMSO resulted in different reaction pathways from the solution to the absorber material and thus dramatic differences in photovoltaic performance.The coordination of Sn^2+with Tu led to the formation of SnS,ZnS and Cu2S in the precursor film,which converted to selenides first and then fused to CZTSSe,resulting in poor film quality and device performance.The highest efficiency obtained from this film was 8.84%with a Voc,def of 0.391 V.The coordination of Sn4+with DMSO facilitated direct formation of CZTS phase in the precursor film which directly converted to CZTSSe during selenization,resulting in compositional uniform absorber and high device performance.A device with an active area efficiency of 12.2%and a Voc,def of 0.344 V was achieved from the Sn^4+solution processed absorber.Furthermore,CZTSSe/Cd S heterojunction heat treatment(JHT)significantly improved the performance of the Sn^4+device but had slightly negative effect on the Sn2+device.A champion CZTSSe solar cell with a total area efficiency of 12.4%(active area efficiency of 13.6%)and a low Voc,def of 0.297 V was achieved from the Sn^4+solution.Our results demonstrate the preformed uniform CZTSSe phase enabled by Sn4+precursor is the key for the highly efficient CZTSSe absorber.The lowest Voc,def and high efficiency achieved here shines new light on the future of CZTSSe solar cell.