In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive,there is a need t...In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive,there is a need to go beyond traditional heat integration and water recycling techniques. Thus,we propose a strategy based on mathe-matical programming techniques to model and optimize the structure of the processes,and perform heat integration including the use of multi-effect distillation columns and integrated water networks to show that the energy effi-ciency and water consumption in bioethanol plants can be significantly improved. Specifically,under some circum-stances energy can even be produced and the water consumption can be reduced below the values required for the production of gasoline.展开更多
Biomass energy conversion can be done in several ways-combustion, gasification, pyrolysis or anaerobic fermentation (biogas production). Each of these technologies has certain advantages and disadvantages from the p...Biomass energy conversion can be done in several ways-combustion, gasification, pyrolysis or anaerobic fermentation (biogas production). Each of these technologies has certain advantages and disadvantages from the point of view of energy generation for final consumption. In parallel, each of them has certain environmental impact in terms of emissions. The proposed EU directive prefers utilization of primary energy sources by application of highly efficient co-generation. Such change in assessment of energy effectiveness also means a completely new approach in assessment of current technologies. This report presents a guide for optimization of biomass energy conversion technologies assuming application of this new condition and minimal environmental impact. Specific values of emissions from particular technologies are used for the evaluation.展开更多
基金the Center for Advanced Process Decision-making at Carnegie Mellon University and NSF Grant CBET096654
文摘In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive,there is a need to go beyond traditional heat integration and water recycling techniques. Thus,we propose a strategy based on mathe-matical programming techniques to model and optimize the structure of the processes,and perform heat integration including the use of multi-effect distillation columns and integrated water networks to show that the energy effi-ciency and water consumption in bioethanol plants can be significantly improved. Specifically,under some circum-stances energy can even be produced and the water consumption can be reduced below the values required for the production of gasoline.
文摘Biomass energy conversion can be done in several ways-combustion, gasification, pyrolysis or anaerobic fermentation (biogas production). Each of these technologies has certain advantages and disadvantages from the point of view of energy generation for final consumption. In parallel, each of them has certain environmental impact in terms of emissions. The proposed EU directive prefers utilization of primary energy sources by application of highly efficient co-generation. Such change in assessment of energy effectiveness also means a completely new approach in assessment of current technologies. This report presents a guide for optimization of biomass energy conversion technologies assuming application of this new condition and minimal environmental impact. Specific values of emissions from particular technologies are used for the evaluation.