China has witnessed rapid economic development since 1978, and during the time, energy production and consumption developed at a tremendous speed as well. Energy efficiency which can be measured by energy consumption ...China has witnessed rapid economic development since 1978, and during the time, energy production and consumption developed at a tremendous speed as well. Energy efficiency which can be measured by energy consumption per unit of GDP, however, experienced continuous decrease. Theoretically, the change of energy efficiency can be attributed to industry structural change and technological change. In order to explain the transformation of Chinese energy efficiency, we adopt logarithmic mean Divisia index techniques to decompose changes in energy intensity in the period of 1994-2005. We find that technological change is the dominant contributor in the decline of energy intensity, but the contribution has declined since 2001. The change in industry structure has decreased the energy intensity before 1998, but raised the intensity after 1998. Decomposed technological effects for all sectors indicate that technological progresses in high energy consuming industries such as raw chemical materials and chemical products, smelting and pressing of ferrous metals, manufacture of non-metallic mineral products and household contribute are the principal drivers of China's declining energy intensity.展开更多
One of the key points in restructuring the coal industry is to close some deficient coal mines which have neither economic result nor social benefit. Based on the relationship among production, cost, and profit, diffe...One of the key points in restructuring the coal industry is to close some deficient coal mines which have neither economic result nor social benefit. Based on the relationship among production, cost, and profit, different economic limits for closing coal mines in different cases were put forward. The relationship between the profit and closedown cost of deficient coal mines was analyzed and an overall economic limit for closing a deficient coal mine was also proposed.展开更多
基金funded by National Science Foundation (Grant No.40535027,40871065)program of Enviromental Education Base of Chinese University Students
文摘China has witnessed rapid economic development since 1978, and during the time, energy production and consumption developed at a tremendous speed as well. Energy efficiency which can be measured by energy consumption per unit of GDP, however, experienced continuous decrease. Theoretically, the change of energy efficiency can be attributed to industry structural change and technological change. In order to explain the transformation of Chinese energy efficiency, we adopt logarithmic mean Divisia index techniques to decompose changes in energy intensity in the period of 1994-2005. We find that technological change is the dominant contributor in the decline of energy intensity, but the contribution has declined since 2001. The change in industry structure has decreased the energy intensity before 1998, but raised the intensity after 1998. Decomposed technological effects for all sectors indicate that technological progresses in high energy consuming industries such as raw chemical materials and chemical products, smelting and pressing of ferrous metals, manufacture of non-metallic mineral products and household contribute are the principal drivers of China's declining energy intensity.
文摘One of the key points in restructuring the coal industry is to close some deficient coal mines which have neither economic result nor social benefit. Based on the relationship among production, cost, and profit, different economic limits for closing coal mines in different cases were put forward. The relationship between the profit and closedown cost of deficient coal mines was analyzed and an overall economic limit for closing a deficient coal mine was also proposed.