期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
河南省能源强度分解及节能减排政策分析
1
作者 马恒运 陈俊国 +5 位作者 管清生 郭善民 任晓静 刘琪 赵慧芬 戴强 《河南农业大学学报》 CAS CSCD 北大核心 2010年第6期731-735,共5页
通过建立要素需求模型和能源强度分解模型,将能源强度变化同能源需求、要素替代、技术进步和经济发展等因素联系起来.估计结果显示,预算约束和技术进步是能源强度变化的两个基本因素,它们的影响效果相当但效果相反.能源替代和经济增长... 通过建立要素需求模型和能源强度分解模型,将能源强度变化同能源需求、要素替代、技术进步和经济发展等因素联系起来.估计结果显示,预算约束和技术进步是能源强度变化的两个基本因素,它们的影响效果相当但效果相反.能源替代和经济增长是不容忽视的影响因素,但能源需求影响效果很小.要降低能源强度,首先要转变技术进步方式,其次要改革能源价格管理体制,用价格信号调节能源消费行为. 展开更多
关键词 能源强度分解 节能减排 要素替代 技术进步
下载PDF
中国工业化进程中的能源消耗强度变动及影响因素——基于费雪(Fisher)指数分解方法的实证分析 被引量:18
2
作者 吴巧生 《经济理论与经济管理》 CSSCI 北大核心 2010年第5期44-50,共7页
本文利用费雪指数分解模型从产业层面考察了我国能源强度指数的变化及影响因素,研究结果表明:(1)改革开放以来,中国能源效率得到了大幅度提高,在能源消耗强度下降的诸因素中效率份额的贡献占绝对主导,结构份额的影响较少,产业部门结构... 本文利用费雪指数分解模型从产业层面考察了我国能源强度指数的变化及影响因素,研究结果表明:(1)改革开放以来,中国能源效率得到了大幅度提高,在能源消耗强度下降的诸因素中效率份额的贡献占绝对主导,结构份额的影响较少,产业部门结构变动对能源消耗强度的累计影响基本上可以忽略。从时间演变的角度看,能源强度下降幅度呈现明显逐年放缓趋势,产业部门技术进步对能源效率提高的影响逐年减低。(2)1981—2007年,全要素生产率水平(ΔTFP)每提高1%,能源消耗强度(ΔI)相应地降低约0.33%。作为决定能源利用效率的关键因素和长期因素,全要素生产率的不断提高导致了我国经济快速发展下能源强度不断降低现象的发生。 展开更多
关键词 能源强度 能源强度指数分解模型 中国 全要素生产率
下载PDF
用能权交易制度能否实现能耗总量和强度“双控”? 被引量:32
3
作者 王兵 赖培浩 杜敏哲 《中国人口·资源与环境》 CSSCI CSCD 北大核心 2019年第1期107-117,共11页
用能权交易是我国一项重要的制度创新,对于推进经济可持续发展有着深远意义。为了探讨用能权交易制度能否实现能耗总量和强度"双控"的任务目标,本文首先测度了用能权交易模式下的最优能源投入和期望产出,并以此为基础,构建了... 用能权交易是我国一项重要的制度创新,对于推进经济可持续发展有着深远意义。为了探讨用能权交易制度能否实现能耗总量和强度"双控"的任务目标,本文首先测度了用能权交易模式下的最优能源投入和期望产出,并以此为基础,构建了一个改进的综合能源强度变化的分解模型。借助2001—2015年30个省份三大产业的投入产出数据,量化分析了三个"五年计划"期间中国能源强度变化及其影响因素。研究发现:(1)中国第三产业的经济增长潜能最大,第一产业次之,第二产业最小。同时发现,第二产业能耗偏高,应该让渡部分用能权,而第一、第三产业还可以适当提高能源消费,以实现资源配置的帕累托最优。(2)地区效应是影响能源强度变化的重要因素,而地区内部的产业结构效应对能源强度变化的影响较小。这意味着中国能源市场的分割、要素扭曲主要来自于省际间的资源贸易壁垒,而在地区内部的产业结构并不存在该壁垒,"诸侯经济"的现象依旧存在。(3)用能权交易模式下的能源强度相比于实际的能源强度能下降约14. 02%,总能耗下降7. 07%。通过用能权交易制度,使能源在省际间产业内进行跨期流通(时间和空间两个维度上),能够实现资源合理利用,经济更加平衡充分地发展,进而实现能耗总量和能源强度"双控"的任务。 展开更多
关键词 用能权交易制度 能源强度分解 数据包络分析 “双控”任务
下载PDF
Technological Progress,Structural Change and China's Energy Efficiency 被引量:2
4
作者 Wang Junsong He Canfei 《Chinese Journal of Population,Resources and Environment》 2009年第2期44-49,共6页
China has witnessed rapid economic development since 1978, and during the time, energy production and consumption developed at a tremendous speed as well. Energy efficiency which can be measured by energy consumption ... China has witnessed rapid economic development since 1978, and during the time, energy production and consumption developed at a tremendous speed as well. Energy efficiency which can be measured by energy consumption per unit of GDP, however, experienced continuous decrease. Theoretically, the change of energy efficiency can be attributed to industry structural change and technological change. In order to explain the transformation of Chinese energy efficiency, we adopt logarithmic mean Divisia index techniques to decompose changes in energy intensity in the period of 1994-2005. We find that technological change is the dominant contributor in the decline of energy intensity, but the contribution has declined since 2001. The change in industry structure has decreased the energy intensity before 1998, but raised the intensity after 1998. Decomposed technological effects for all sectors indicate that technological progresses in high energy consuming industries such as raw chemical materials and chemical products, smelting and pressing of ferrous metals, manufacture of non-metallic mineral products and household contribute are the principal drivers of China's declining energy intensity. 展开更多
关键词 technological change structural change energy efficiency energy intensity
下载PDF
Structural Decomposition Analysis on Energy Intensity Changes at Regional Level 被引量:1
5
作者 廖华 王策 +1 位作者 朱治双 马晓微 《Transactions of Tianjin University》 EI CAS 2013年第4期287-292,共6页
As China's energy intensity fluctuated in recent years, it is necessary to examine whether this fluctuation happened at a regional level. This paper establishes a decomposition model by using the structural decomp... As China's energy intensity fluctuated in recent years, it is necessary to examine whether this fluctuation happened at a regional level. This paper establishes a decomposition model by using the structural decomposition analysis (SDA) method at a regional level. Then this model is employed to empirically analyze the changes of Beijing's energy intensity. The conclusions are as follows: during 2002-2010, except petroleum, the energy intensity decreased and the changes were mostly attributed to the technology changes, while the final use variation actually increased the energy intensity; comparing different periods of 2002-2010, the decline rates of energy intensity for coal and hydropower were decreasing, resulting from the production technology being more energy-intensive than before; the energy intensity changes of petroleum firstly increased substantially and then decreased moderately. 展开更多
关键词 structural decomposition analysis input-output analysis energy intensity
下载PDF
Decomposition of Energy-related CO_2 Emissions from Shanghai's Industries and Policy Implications
6
作者 Chen Wei Zhu Dajian 《Chinese Journal of Population,Resources and Environment》 2012年第3期40-46,共7页
This paper quantifies a decomposition analysis of energy-related CO2 emissions in the industrial sectors of Shanghai over the period 1994-2007.The Log-Mean Divisia Index(LMDI) method is applied to this study in terms ... This paper quantifies a decomposition analysis of energy-related CO2 emissions in the industrial sectors of Shanghai over the period 1994-2007.The Log-Mean Divisia Index(LMDI) method is applied to this study in terms of six factors:labor force,labor mobility,gross labor productivity,energy intensity,fuel mix,and emission coefficient.In addition,the decoupling effect between industrial economic growth and CO2 emissions is analyzed to evaluate CO2 mitigation strategies for Shanghai.The results show that all labor productivity has the largest positive effect on CO2 emission changes in the industrial sectors,whereas labor mobility and energy intensity are the main components for decreasing CO2 emissions.Other factors have different effects on CO2 mitigation in different sub-periods.Although a relative decoupling of industrial CO2 emissions from the economic growth in Shanghai has been found,Shanghai should keep pace with the industrial CO2 emissions reduction by implementing low-carbon technology.These results have important policy implications:Plan C is the reasonable choice for Shanghai. 展开更多
关键词 industrial CO2 emissions LMDI DECOUPLING Shang-hai
下载PDF
对外开放与能源利用效率:基于35个工业行业的实证研究 被引量:57
7
作者 李未无 《国际贸易问题》 CSSCI 北大核心 2008年第6期7-15,共9页
中国对外开放和能源利用效率都不断提高。本文先从理论层面探讨对外开放影响能源利用效率的一般机制,然后利用1999-2005年中国35个工业行业的面板数据进行经验研究。回归结果表明,对外开放对能源利用效率的提高具有积极影响。能源强度... 中国对外开放和能源利用效率都不断提高。本文先从理论层面探讨对外开放影响能源利用效率的一般机制,然后利用1999-2005年中国35个工业行业的面板数据进行经验研究。回归结果表明,对外开放对能源利用效率的提高具有积极影响。能源强度结构分解结果表明,对能源利用效率提高起主要决定作用的7个高耗能行业,除化学行业外,对外开放度都远低于全部工业的平均水平。因此,在保证国家经济安全的前提下,中国可适度加大高耗能行业的对外开放。 展开更多
关键词 对外开放 能源利用效率 能源强度结构分解 面板数据计量分析
原文传递
STRUCTURAL DECOMPOSITION ANALYSIS ON CHINA'S ENERGY INTENSITY CHANGE FOR 1987-2005 被引量:7
8
作者 Yan XIA Cuihong YANG Xikang CHEN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第1期156-166,共11页
There has been considerable debate about the major factors responsible for the dramatic decline of China's energy intensity in the 1980s and 1990s. However, few detailed analysis has been done to explain the fluctuat... There has been considerable debate about the major factors responsible for the dramatic decline of China's energy intensity in the 1980s and 1990s. However, few detailed analysis has been done to explain the fluctuation in energy intensity during 2002-005. In this paper, we use the structural decomposition analysis (SDA) to decompose energy intensity into five determining factors: Energy input coefficient, technology coefficient (Leontief inverse coefficient), final demands structure by product, final demands by category and final energy consumption coefficient. We then further decompose two coefficients, energy input coefficient and technology coefficient, into structure and real coefficient. Empirical study is carried out based on the energy-input-output tables from 1987 to 2005 in 2000 constant price. The results show that between 1987 and 2002, energy input structure accounts for most of the decline in energy intensity. However, the input structure and final demands structure by product explain the increase of the energy intensity between 2002 and 2005. 展开更多
关键词 Energy intensity input-output technology RAS method structural decomposition anal ysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部