Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In t...Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In this paper, the author constructs an identical equation for carbon emission, based on the economic aggregate, the economic structure, the efficiency of energy utilization, the structure of energy consumption, and the coefficient of carbon emission; by applying to LMDI decomposition technology, the author analyzes the carbon emission of China from 1995 to 2007 at industrial level and regional level. The results show that the expansion of economic aggregate is the main reason for China' s rapidly increasing carbon emission and the increase of energy utilization efficiency is the key factor that can hold back the increase of carbon emission. In addition, the change of industrial structure or regional structure and the change of traditional energy structure have limited influence on the carbon emission, and their potentials have not yet been exploited. At the end of this paper, the author proposes the efforts that China should make to reduce carbon emission.展开更多
As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a rel...As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.展开更多
In IaaS Cloud,different mapping relationships between virtual machines(VMs) and physical machines(PMs) cause different resource utilization,so how to place VMs on PMs to reduce energy consumption is becoming one of th...In IaaS Cloud,different mapping relationships between virtual machines(VMs) and physical machines(PMs) cause different resource utilization,so how to place VMs on PMs to reduce energy consumption is becoming one of the major concerns for cloud providers.The existing VM scheduling schemes propose optimize PMs or network resources utilization,but few of them attempt to improve the energy efficiency of these two kinds of resources simultaneously.This paper proposes a VM scheduling scheme meeting multiple resource constraints,such as the physical server size(CPU,memory,storage,bandwidth,etc.) and network link capacity to reduce both the numbers of active PMs and network elements so as to finally reduce energy consumption.Since VM scheduling problem is abstracted as a combination of bin packing problem and quadratic assignment problem,which is also known as a classic combinatorial optimization and NP-hard problem.Accordingly,we design a twostage heuristic algorithm to solve the issue,and the simulations show that our solution outperforms the existing PM- or network-only optimization solutions.展开更多
With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and im...With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.展开更多
This paper uses the Global Trade Analysis Project(version 7)database to calculate embodied CO2emissions in bilateral trade between China and other countries(regions)based on input-output methods.The sources and flows ...This paper uses the Global Trade Analysis Project(version 7)database to calculate embodied CO2emissions in bilateral trade between China and other countries(regions)based on input-output methods.The sources and flows of embodied CO2emissions in import and export trade of China are analyzed.Results show that the flows of embodied CO2emissions in export trade are highly concentrated.The main flows to the United States(US)and Japan account for 1/4 and 1/7 of the total CO2emissions in export trade,respectively.Concentrated flows of total exports and small differences in export structure are the main reasons for the highly concentrated export trade.The sources of embodied CO2emissions in import trade have relatively low concentration.Taiwan Province of China,Hong Kong Special Administrative Region of China,US,Russia,Republic of Korea,and Japan account for around 7.72%–12.67%of the total embodied CO2emissions in import trade.The relative dispersion of import sources,the impact of the import structure,and the level of production technology in importing countries caused low concentration of CO2emissions in import trade.Overall,the embodied CO2emissions in the export trade of China are higher than those in import trade.As a result,production-based CO2emissions are higher than consumption-based CO2emissions.The difference of 8.96×108t of CO2,which comes mainly from the US,Japan,Germany,and the United Kingdom,accounts for 58.70%of the total difference.Some suggestions,such as improving energy efficiency,alerting high carbon-intensive industries transfer,expanding the market for sharing risks,and prompting the accounting system of consumption-based CO2emissions,are proposed based on the results.展开更多
Polymer dispersants are widely used as grinding aids to reduce the viscosity of mineral particle suspensions and to improve energy efficiency during fine grinding. The authors studied here the effects of polymer dispe...Polymer dispersants are widely used as grinding aids to reduce the viscosity of mineral particle suspensions and to improve energy efficiency during fine grinding. The authors studied here the effects of polymer dispersants of different molecular structure on limestone suspension properties in wet stirred media milling. The polymers differed in their molecular weight and PDI (polydispersity index). Two traditionally fractionated polymer dispersants having a high PDI (over 2) and one made by controlled radical polymerization having a low PDI (1.2) were tested. It was noticed that these dispersants worked as electrosteric stabilizers and prevented the agglomeration of ground limestone particles. Their addition allowed increased solids concentrations to be used in the grinding experiments and at the same time lowered the particle size and specific energy consumption. The particle sizes obtained were about 1 μm regardless of the dispersant or its dose. The dispersant with a low PDI reduced the viscosity more than did the high PDI dispersants. The results indicate that higher solids concentrations can be used at the same dispersant dose when a low PDI dispersant is used, leading to energy savings via increased throughput. Alternatively, a lower dose of low PDI polymer dispersant than of a high PDI polymer dispersant can be used at the same solids concentration.展开更多
Switch policy is essential for small cells to properly serve variable number of users in an energy efficient way.However,frequently switching small cell base stations(SBSs) may increase the network operating cost,espe...Switch policy is essential for small cells to properly serve variable number of users in an energy efficient way.However,frequently switching small cell base stations(SBSs) may increase the network operating cost,especially when there is an nonnegligible start-up energy cost.To this end,by observing the variety of user number,we focus on the design of a switch policy which minimize the cumulative energy consumption.A given user transmission rate is guaranteed and the capability of SBSs are limited as well.According to the knowledge on user number variety,we classify the energy consumption problem into two cases.In complete information case,to minimize the cumulative energy consumption,an offline solution is proposed according to critical segments.A heuristic algorithm for incomplete information case(HAIIC) is proposed by tracking the difference of cumulative energy consumption.The upper bound of the Energy Consumption Ratio(ECR) for HAIIC is derived as well.In addition,a practical Q-learning based probabilistic policy is proposed.Simulation results show that the proposed HAIIC algorithm is able to save energy efficiently.展开更多
A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the ne...A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.展开更多
Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, del...Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).展开更多
The study on the enterprise's energy efficiency is one of the most important fields of energy efficiency research. Most studies used DEA and aggregate data to estimate the energy efficiency of enterprises. In this st...The study on the enterprise's energy efficiency is one of the most important fields of energy efficiency research. Most studies used DEA and aggregate data to estimate the energy efficiency of enterprises. In this study, based on Cobb-Douglas production function, we make a SFA model which takes the energy input and CO2 emission into account. By using the SFA model, we calculate the refineries' total-factor energy efficiency with Sinopec refineries' micro-data from 2004 to 2009. Meanwhile, we do empirical study on the factors which influence the energy efficiency. In the last, we put forward some advices so as to improve energy efficiency.展开更多
Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently availa...Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.展开更多
Abstract: Nowadays energy saving and environmental protection are crucial issues in the international society. One of the best solutions for both issues is to improve energy efficiency. To improve energy efficiency, ...Abstract: Nowadays energy saving and environmental protection are crucial issues in the international society. One of the best solutions for both issues is to improve energy efficiency. To improve energy efficiency, it is commonly recognized by both standards and energy sectors that Minimum Energy Performance Standards (MEPS) could play an important role . China and the USA, the top two energy consumption countries in the world, both have adopted MEPS program to address the problem of energy conservation and environmental protection. This paper analyzes and compares the two countries' MEPS programs from a historical and legal context, examining the role of different stakeholders in the process,the process, the outcomes by standards,and then makes some recommendations for both sides.展开更多
In orthogonal frequency division multiplexing(OFDM) systems,for given total transmit power,insertion of the noninformation bearing cyclic prefix(CP) will reduce the effective energy per information bit.Generally,the e...In orthogonal frequency division multiplexing(OFDM) systems,for given total transmit power,insertion of the noninformation bearing cyclic prefix(CP) will reduce the effective energy per information bit.Generally,the energy loss is proportional to the ratio of CP length to the symbol duration.If the CP is too long,the energy loss will be considerable high.In this paper,we propose an energy efficient transmission scheme for OFDM systems in Long Term Evolution(LTE) which is developed based on reduction of the CP energy.Simulation results show that the proposed method can save up to about10%of the total energy,while keeping almost the same bit-error-rate(BER) performance in some applications.展开更多
In low-duty-cycle wireless sensor networks,designers have to cope with unreliable links and limited communication capacity.In this work,we propose COST,a coding scheme that leverages spatial-temporal diversity to achi...In low-duty-cycle wireless sensor networks,designers have to cope with unreliable links and limited communication capacity.In this work,we propose COST,a coding scheme that leverages spatial-temporal diversity to achieve higher energy efficiency and lower delay of packet transmissions.We particularly address long sleeping intervals in low-duty-cycle networks by exploiting multi-path diversity.Specifically,we propose to employ an erasure-coding scheme to improve reliability.With respect to energy efficiency and delivery timeliness,we formulate the problem in optimal allocation of coded blocks over multiple paths,which is then proved to be NP-hard.We further propose a near-optimal algorithm to solve the allocation problem.Through extensive simulations,we evaluate the impact of network parameters and demonstrate the effectiveness of our proposal.展开更多
The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipme...The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.展开更多
As a constraint for smart devices,energy consumption has attract people's attention for a long time period. How to get higher resource utilization with less energy consumption is a challenge for cognitive radio ne...As a constraint for smart devices,energy consumption has attract people's attention for a long time period. How to get higher resource utilization with less energy consumption is a challenge for cognitive radio networks. Secondary users have to participate in spectrum sensing at the cost of energy and access idle spectrum without interfering primary users. However,not all participating secondary users can access idle spectrum. How to ensure the participation users access spectrum efficiently with a larger probability is an urgent problem to be solved. We propose an Energy Efficiency-based Decision Making(EEDM) for cognitive radio networks,which fully considers residual energy and probability of obtaining spectrum resources. Simulation and analysis show that the proposed scheme can maximize proportion of allocated users under the premise of ensuring the accuracy of spectrum sensing,then balance users' energy consumption and access efficiency,so as to effectively improve the utilization of spectrum resources.展开更多
The urgency of increasing energy efficiency in new building design and retrofits has pushed lighting simulation to play a central role in sustainable lighting design. The shape of the building and its orientation, the...The urgency of increasing energy efficiency in new building design and retrofits has pushed lighting simulation to play a central role in sustainable lighting design. The shape of the building and its orientation, the reflectances of building surfaces and glazed areas are important parameters in the daylighting design of buildings. Glazing systems can cut energy consumption and associated pollution sources, reduce peak demand, enhance daylighting performance and improve occupant comfort. This paper presents the results of a numerical and experimental comparison between the performances of an office building with and without external sunscreens. The aim was to analyse the illuminance distribution and some investigations have also been made with regards to the effect on daylight in rooms when sunscreens are used. The experimental results were obtained using an office building scale model and sky simulator. The numerical results were obtained through radiance, the ray-tracing program, to accurately predict the light levels and produce photo realistic images of the architectural space in all sky conditions: Illuminance values were obtained respectively through reference point measurements. The daylighting performances of the office building model with and without the sunscreens have been compared and analysed.展开更多
Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramat...Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of exhaust gas energy recovery system of pneumatic driving automotive engine, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system, which includes Rankine cycle based power wheel cycle unit etc., has been introduced.展开更多
文摘Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In this paper, the author constructs an identical equation for carbon emission, based on the economic aggregate, the economic structure, the efficiency of energy utilization, the structure of energy consumption, and the coefficient of carbon emission; by applying to LMDI decomposition technology, the author analyzes the carbon emission of China from 1995 to 2007 at industrial level and regional level. The results show that the expansion of economic aggregate is the main reason for China' s rapidly increasing carbon emission and the increase of energy utilization efficiency is the key factor that can hold back the increase of carbon emission. In addition, the change of industrial structure or regional structure and the change of traditional energy structure have limited influence on the carbon emission, and their potentials have not yet been exploited. At the end of this paper, the author proposes the efforts that China should make to reduce carbon emission.
基金supported by the ZTE Corp under Grant CON1412150018the Natural Science Foundation of China under Grant 61572389 and 61471361
文摘As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.
基金the National Natural Science Foundation of China,the National High Technology Research and Development Program of China (863 Program),the Fundamental Research Funds for the Central Universities,the Natural Science Foundation of Gansu Province,China,the Open Fund of the State Key Laboratory of Software Development Environment
文摘In IaaS Cloud,different mapping relationships between virtual machines(VMs) and physical machines(PMs) cause different resource utilization,so how to place VMs on PMs to reduce energy consumption is becoming one of the major concerns for cloud providers.The existing VM scheduling schemes propose optimize PMs or network resources utilization,but few of them attempt to improve the energy efficiency of these two kinds of resources simultaneously.This paper proposes a VM scheduling scheme meeting multiple resource constraints,such as the physical server size(CPU,memory,storage,bandwidth,etc.) and network link capacity to reduce both the numbers of active PMs and network elements so as to finally reduce energy consumption.Since VM scheduling problem is abstracted as a combination of bin packing problem and quadratic assignment problem,which is also known as a classic combinatorial optimization and NP-hard problem.Accordingly,we design a twostage heuristic algorithm to solve the issue,and the simulations show that our solution outperforms the existing PM- or network-only optimization solutions.
基金supported by the National Natural Science Foundation of China (NSFC) (No. 61272200, 10805019)the Program for Excellent Young Teachers in Higher Education of Guangdong, China (No. Yq2013012)+2 种基金the Fundamental Research Funds for the Central Universities (2015ZJ010)the Special Support Program of Guangdong Province (201528004)the Pearl River Science & Technology Star Project (201610010046)
文摘With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.
基金Under the auspices of National Natural Science Foundation of China(No.40905062,71103012)National Basic Research Program of China(No.2012CB955904)
文摘This paper uses the Global Trade Analysis Project(version 7)database to calculate embodied CO2emissions in bilateral trade between China and other countries(regions)based on input-output methods.The sources and flows of embodied CO2emissions in import and export trade of China are analyzed.Results show that the flows of embodied CO2emissions in export trade are highly concentrated.The main flows to the United States(US)and Japan account for 1/4 and 1/7 of the total CO2emissions in export trade,respectively.Concentrated flows of total exports and small differences in export structure are the main reasons for the highly concentrated export trade.The sources of embodied CO2emissions in import trade have relatively low concentration.Taiwan Province of China,Hong Kong Special Administrative Region of China,US,Russia,Republic of Korea,and Japan account for around 7.72%–12.67%of the total embodied CO2emissions in import trade.The relative dispersion of import sources,the impact of the import structure,and the level of production technology in importing countries caused low concentration of CO2emissions in import trade.Overall,the embodied CO2emissions in the export trade of China are higher than those in import trade.As a result,production-based CO2emissions are higher than consumption-based CO2emissions.The difference of 8.96×108t of CO2,which comes mainly from the US,Japan,Germany,and the United Kingdom,accounts for 58.70%of the total difference.Some suggestions,such as improving energy efficiency,alerting high carbon-intensive industries transfer,expanding the market for sharing risks,and prompting the accounting system of consumption-based CO2emissions,are proposed based on the results.
文摘Polymer dispersants are widely used as grinding aids to reduce the viscosity of mineral particle suspensions and to improve energy efficiency during fine grinding. The authors studied here the effects of polymer dispersants of different molecular structure on limestone suspension properties in wet stirred media milling. The polymers differed in their molecular weight and PDI (polydispersity index). Two traditionally fractionated polymer dispersants having a high PDI (over 2) and one made by controlled radical polymerization having a low PDI (1.2) were tested. It was noticed that these dispersants worked as electrosteric stabilizers and prevented the agglomeration of ground limestone particles. Their addition allowed increased solids concentrations to be used in the grinding experiments and at the same time lowered the particle size and specific energy consumption. The particle sizes obtained were about 1 μm regardless of the dispersant or its dose. The dispersant with a low PDI reduced the viscosity more than did the high PDI dispersants. The results indicate that higher solids concentrations can be used at the same dispersant dose when a low PDI dispersant is used, leading to energy savings via increased throughput. Alternatively, a lower dose of low PDI polymer dispersant than of a high PDI polymer dispersant can be used at the same solids concentration.
基金partially supported by National Key Project of China under Grants No. 2013ZX03001007-004National Natural Science Foundation of China under Grants No. 61102052,61325012,61271219,91438115 and 61221001
文摘Switch policy is essential for small cells to properly serve variable number of users in an energy efficient way.However,frequently switching small cell base stations(SBSs) may increase the network operating cost,especially when there is an nonnegligible start-up energy cost.To this end,by observing the variety of user number,we focus on the design of a switch policy which minimize the cumulative energy consumption.A given user transmission rate is guaranteed and the capability of SBSs are limited as well.According to the knowledge on user number variety,we classify the energy consumption problem into two cases.In complete information case,to minimize the cumulative energy consumption,an offline solution is proposed according to critical segments.A heuristic algorithm for incomplete information case(HAIIC) is proposed by tracking the difference of cumulative energy consumption.The upper bound of the Energy Consumption Ratio(ECR) for HAIIC is derived as well.In addition,a practical Q-learning based probabilistic policy is proposed.Simulation results show that the proposed HAIIC algorithm is able to save energy efficiently.
基金Project(2010DFA72740-06) supported by International Science & Technology Cooperation Program of China
文摘A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.
基金supported in part by the project of National Natural Science Foundation of China under Grant No. 61071075National Science and Technology Major Project of China under Grant No. 2010ZX03003-001-02+1 种基金National Science and Technology Major Project of China under Grant No. 2011ZX03004003the Chinese Ministry of Education in the project of the Fundamental Research Funds for the Central Universities under Grant No.2011YJS216
文摘Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).
文摘The study on the enterprise's energy efficiency is one of the most important fields of energy efficiency research. Most studies used DEA and aggregate data to estimate the energy efficiency of enterprises. In this study, based on Cobb-Douglas production function, we make a SFA model which takes the energy input and CO2 emission into account. By using the SFA model, we calculate the refineries' total-factor energy efficiency with Sinopec refineries' micro-data from 2004 to 2009. Meanwhile, we do empirical study on the factors which influence the energy efficiency. In the last, we put forward some advices so as to improve energy efficiency.
基金Project(2009AA05Z215) supported by the National High Technology Research and Development Program of China
文摘Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.
文摘Abstract: Nowadays energy saving and environmental protection are crucial issues in the international society. One of the best solutions for both issues is to improve energy efficiency. To improve energy efficiency, it is commonly recognized by both standards and energy sectors that Minimum Energy Performance Standards (MEPS) could play an important role . China and the USA, the top two energy consumption countries in the world, both have adopted MEPS program to address the problem of energy conservation and environmental protection. This paper analyzes and compares the two countries' MEPS programs from a historical and legal context, examining the role of different stakeholders in the process,the process, the outcomes by standards,and then makes some recommendations for both sides.
基金the Chinese 863 Program,National "Eleventh Five-year" Project of China,the National Natural Science Foundation of China
文摘In orthogonal frequency division multiplexing(OFDM) systems,for given total transmit power,insertion of the noninformation bearing cyclic prefix(CP) will reduce the effective energy per information bit.Generally,the energy loss is proportional to the ratio of CP length to the symbol duration.If the CP is too long,the energy loss will be considerable high.In this paper,we propose an energy efficient transmission scheme for OFDM systems in Long Term Evolution(LTE) which is developed based on reduction of the CP energy.Simulation results show that the proposed method can save up to about10%of the total energy,while keeping almost the same bit-error-rate(BER) performance in some applications.
基金This work was supported in part by the National Basic Research Program of China(Grant No.2011CB302705)the National Natural Science Foundation of China(GrantNos.61003277,60903206)+1 种基金the State key DevelopmentProgram for Basic Research of China(No.2009CB3020402)the National Natural Science Foun-dation of Jiangsu Province(Grant No.BK2010102)
文摘In low-duty-cycle wireless sensor networks,designers have to cope with unreliable links and limited communication capacity.In this work,we propose COST,a coding scheme that leverages spatial-temporal diversity to achieve higher energy efficiency and lower delay of packet transmissions.We particularly address long sleeping intervals in low-duty-cycle networks by exploiting multi-path diversity.Specifically,we propose to employ an erasure-coding scheme to improve reliability.With respect to energy efficiency and delivery timeliness,we formulate the problem in optimal allocation of coded blocks over multiple paths,which is then proved to be NP-hard.We further propose a near-optimal algorithm to solve the allocation problem.Through extensive simulations,we evaluate the impact of network parameters and demonstrate the effectiveness of our proposal.
文摘The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.
基金supported by the National Natural Science Foundation of China (NO.61602358,No.61373170,NO.U1401251,No.U1536202)Fundamental Research Funds for the Central Universities(No.JB150114)the Natural Science Basic Research Plan in Shaanxi Province,China (No.2014JQ8308)
文摘As a constraint for smart devices,energy consumption has attract people's attention for a long time period. How to get higher resource utilization with less energy consumption is a challenge for cognitive radio networks. Secondary users have to participate in spectrum sensing at the cost of energy and access idle spectrum without interfering primary users. However,not all participating secondary users can access idle spectrum. How to ensure the participation users access spectrum efficiently with a larger probability is an urgent problem to be solved. We propose an Energy Efficiency-based Decision Making(EEDM) for cognitive radio networks,which fully considers residual energy and probability of obtaining spectrum resources. Simulation and analysis show that the proposed scheme can maximize proportion of allocated users under the premise of ensuring the accuracy of spectrum sensing,then balance users' energy consumption and access efficiency,so as to effectively improve the utilization of spectrum resources.
文摘The urgency of increasing energy efficiency in new building design and retrofits has pushed lighting simulation to play a central role in sustainable lighting design. The shape of the building and its orientation, the reflectances of building surfaces and glazed areas are important parameters in the daylighting design of buildings. Glazing systems can cut energy consumption and associated pollution sources, reduce peak demand, enhance daylighting performance and improve occupant comfort. This paper presents the results of a numerical and experimental comparison between the performances of an office building with and without external sunscreens. The aim was to analyse the illuminance distribution and some investigations have also been made with regards to the effect on daylight in rooms when sunscreens are used. The experimental results were obtained using an office building scale model and sky simulator. The numerical results were obtained through radiance, the ray-tracing program, to accurately predict the light levels and produce photo realistic images of the architectural space in all sky conditions: Illuminance values were obtained respectively through reference point measurements. The daylighting performances of the office building model with and without the sunscreens have been compared and analysed.
基金National Natural Science Foundation of China ( No. 50976046)
文摘Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of exhaust gas energy recovery system of pneumatic driving automotive engine, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system, which includes Rankine cycle based power wheel cycle unit etc., has been introduced.