By optimizing the network topology, this paper proposes a newmethod of queuing theory clustering algorithm based on dynamic programming in a home energy management system( HEMS). First, the total cost of the HEMS sy...By optimizing the network topology, this paper proposes a newmethod of queuing theory clustering algorithm based on dynamic programming in a home energy management system( HEMS). First, the total cost of the HEMS system is divided into two parts, the gateway installation cost and the data transmission cost. Secondly, through comparing two kinds of different queuing theories, the cost problem of the HEMS is converted into the problem of gateway deployment. Finally, a machine-to-machine( M2M) gateway configuration scheme is designed to minimize the cost of the system. Simulation results showthat the cost of the HEMS system mainly comes from the installation cost of the gateways when the gateway buffer space is large enough. If the gateway buffer space is limited, the proposed queue algorithm can effectively achieve optimal gateway setting while maintaining the minimal cost of the HEMS at desired levels through marginal analyses and the properties of cost minimization.展开更多
A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh...A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.展开更多
The introduction of new kinds of energy mixes to the electricity grid is a challenging environmental task for present and future generations as they fight the pollution and global warming issues associated with urbani...The introduction of new kinds of energy mixes to the electricity grid is a challenging environmental task for present and future generations as they fight the pollution and global warming issues associated with urbanization. Individual appliances and whole buildings that continuously incorporate local intelligence which originates from the new technologies of Internet of Things are the new infrastructure that this integration is based on. Smart Electricity Grids are becoming more intensively integrated with tertiary building energy management systems and distributed energy generators such as wind and solar. This new smart network type harnesses the loT (lnternet of Things) principles by generating a new network made of active elements combined with the necessary control and distributed coordination mechanisms. This new self-organized overlay network of connected DER (distributed energy resources) allows for the seamless management and control of the active grid as well as the efficient coordination and exploration of single and aggregated technical prosumer potential (generation and consumption) to participate in energy balancing and other distributed grid related services, applying energy management strategies based on control and predict of the DERs behavior for facing demand side management issues.展开更多
基金The National Natural Science Foundation of China(No.61471031)the Fundamental Research Funds for the Central Universities(No.2013JBZ01)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0766)
文摘By optimizing the network topology, this paper proposes a newmethod of queuing theory clustering algorithm based on dynamic programming in a home energy management system( HEMS). First, the total cost of the HEMS system is divided into two parts, the gateway installation cost and the data transmission cost. Secondly, through comparing two kinds of different queuing theories, the cost problem of the HEMS is converted into the problem of gateway deployment. Finally, a machine-to-machine( M2M) gateway configuration scheme is designed to minimize the cost of the system. Simulation results showthat the cost of the HEMS system mainly comes from the installation cost of the gateways when the gateway buffer space is large enough. If the gateway buffer space is limited, the proposed queue algorithm can effectively achieve optimal gateway setting while maintaining the minimal cost of the HEMS at desired levels through marginal analyses and the properties of cost minimization.
基金sponsored by National Key Basic Research Program of China (973 Program) (2012CB215102) for WuUS National Science Foundation Award (1135872) for VaraiyaHong Kong RGC Theme-based Research Project (T23-701/14-N) for Hui
文摘A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.
文摘The introduction of new kinds of energy mixes to the electricity grid is a challenging environmental task for present and future generations as they fight the pollution and global warming issues associated with urbanization. Individual appliances and whole buildings that continuously incorporate local intelligence which originates from the new technologies of Internet of Things are the new infrastructure that this integration is based on. Smart Electricity Grids are becoming more intensively integrated with tertiary building energy management systems and distributed energy generators such as wind and solar. This new smart network type harnesses the loT (lnternet of Things) principles by generating a new network made of active elements combined with the necessary control and distributed coordination mechanisms. This new self-organized overlay network of connected DER (distributed energy resources) allows for the seamless management and control of the active grid as well as the efficient coordination and exploration of single and aggregated technical prosumer potential (generation and consumption) to participate in energy balancing and other distributed grid related services, applying energy management strategies based on control and predict of the DERs behavior for facing demand side management issues.