Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients a...Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse, Over the past few years, some wastewater treatment plants have tried to revamp themselves as "resource factories," enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side- stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.展开更多
This paper uses the Global Trade Analysis Project(version 7)database to calculate embodied CO2emissions in bilateral trade between China and other countries(regions)based on input-output methods.The sources and flows ...This paper uses the Global Trade Analysis Project(version 7)database to calculate embodied CO2emissions in bilateral trade between China and other countries(regions)based on input-output methods.The sources and flows of embodied CO2emissions in import and export trade of China are analyzed.Results show that the flows of embodied CO2emissions in export trade are highly concentrated.The main flows to the United States(US)and Japan account for 1/4 and 1/7 of the total CO2emissions in export trade,respectively.Concentrated flows of total exports and small differences in export structure are the main reasons for the highly concentrated export trade.The sources of embodied CO2emissions in import trade have relatively low concentration.Taiwan Province of China,Hong Kong Special Administrative Region of China,US,Russia,Republic of Korea,and Japan account for around 7.72%–12.67%of the total embodied CO2emissions in import trade.The relative dispersion of import sources,the impact of the import structure,and the level of production technology in importing countries caused low concentration of CO2emissions in import trade.Overall,the embodied CO2emissions in the export trade of China are higher than those in import trade.As a result,production-based CO2emissions are higher than consumption-based CO2emissions.The difference of 8.96×108t of CO2,which comes mainly from the US,Japan,Germany,and the United Kingdom,accounts for 58.70%of the total difference.Some suggestions,such as improving energy efficiency,alerting high carbon-intensive industries transfer,expanding the market for sharing risks,and prompting the accounting system of consumption-based CO2emissions,are proposed based on the results.展开更多
Architecture is defined as a symbiosis of function, aesthetics, technology and economics. This paper introduces the concept of development of technology in architecture for a sustainable society. The concept is based ...Architecture is defined as a symbiosis of function, aesthetics, technology and economics. This paper introduces the concept of development of technology in architecture for a sustainable society. The concept is based on a systemic link building-climate-energy. The scientific analysis of this link allows us to define three technical levels of modern architecture. The lowest level is represented by low energy architecture that gives priority to the element of energy. Climate is defined only by physical parameters here. It is characterized by the production of emissions that deplete the Biocapacity of the Earth. Higher level of architecture is represented by green architecture which gives equal priority to both energy and ecology. Climate is defined by physical and chemical parameters here. It is characterized by the tendency of reduction of emissions production and move towards environmentally clean energy, material and water sources. Sustainable architecture represents the target program of development of human settlements in the interaction of society-energy-ecology. It is characterized by the balance of categories nature-man-technology and by minimizing the emissions production to the extent of their coverage by the Earth's ecosystems. This paper introduces design strategy for green building. The basic structure of the strategy defines, and internal structure of the strategy emphasizes, principles and concepts of green buildings. In this strategy, the vital role is played by renewable energy sources as a production technology of the capital provided to man by nature.展开更多
The conversion of solar energyinto electricity reveals a huge importance in the production of"clean" energy, mainly when applied to decentralized production systems (micro-generation). However, there is the need t...The conversion of solar energyinto electricity reveals a huge importance in the production of"clean" energy, mainly when applied to decentralized production systems (micro-generation). However, there is the need to develop and optimize these processes in order to turn it more sustainable in economic and technological scoops. The main purpose of this work is to study the solar energy conversion into electricity through photovoltaic cells, characterizing the process efficiencies. This study intends to evaluate the energetic and exergetic efficiencies defining them as indicators in the formulation ofa sustainability index. All the procedures are in a theoretical scope with an illustrative example in the end of this work.展开更多
Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of s...Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV (photovoltaic) technology and actual energy production. Solar energy is widely under-used and one way to reduce this is to improve production in low-energy places with high demand: large cities. According to this option, about 40% of the electricity consumption in the built environment could be produced by solar PV systems and energy storage systems. This paper discusses conditions in the built environment and functional and design qualities enabling an increased diffusion of the technologies In a comparative analysis of PV technologies, the criteria taken into account encompass efficiency of the type of solar cell and commercial availability. Special attention is paid to the design features of different PV systems, like flexibility, colour and transparency that might help in their utilization as integrated in building material and ornaments in modem architecture. The same procedure is followed for electricity storage devices. The preliminary conclusion is that at present the freedom of design is largest for a combination of crystalline silicon PV cells and Li-ion batteries.展开更多
Even though Saudi Arabia is the world's largest producer and exporter of petroleum and petroleum based products, it is also blessed with high potential of renewable energy sources like solar and wind. Untapped wind a...Even though Saudi Arabia is the world's largest producer and exporter of petroleum and petroleum based products, it is also blessed with high potential of renewable energy sources like solar and wind. Untapped wind and solar energy sources, which are abundant throughout the kingdom, can be connected and optimally integrated into the grid through the use of smart grid technologies and the expansion of transmission facilities. Smart grid is an auto-balancing, self-monitoring power grid that accepts power from any source of fuel like oil, sun or wind and delivers electricity from suppliers to consumers. It helps to control the use of appliances in order to save energy, reduces cost and increase reliability. This paper describes the attributes of a smart grid and how these act as driving force to modernize the electrical power grid. The necessity of conservation of oil in Saudi Arabia is argued. Moreover, the vast availability of renewable energy sources like solar and wind in Saudi Arabia and advantages in utilizing these sources through smart grid technologies are advocated in this paper.展开更多
基金Acknowledgements The authors wish to thank the National Natural Science Foundation of China (51522811 and 51278479), and the NSFC-RGC fund (21261160489) for the support of this work.
文摘Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse, Over the past few years, some wastewater treatment plants have tried to revamp themselves as "resource factories," enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side- stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.
基金Under the auspices of National Natural Science Foundation of China(No.40905062,71103012)National Basic Research Program of China(No.2012CB955904)
文摘This paper uses the Global Trade Analysis Project(version 7)database to calculate embodied CO2emissions in bilateral trade between China and other countries(regions)based on input-output methods.The sources and flows of embodied CO2emissions in import and export trade of China are analyzed.Results show that the flows of embodied CO2emissions in export trade are highly concentrated.The main flows to the United States(US)and Japan account for 1/4 and 1/7 of the total CO2emissions in export trade,respectively.Concentrated flows of total exports and small differences in export structure are the main reasons for the highly concentrated export trade.The sources of embodied CO2emissions in import trade have relatively low concentration.Taiwan Province of China,Hong Kong Special Administrative Region of China,US,Russia,Republic of Korea,and Japan account for around 7.72%–12.67%of the total embodied CO2emissions in import trade.The relative dispersion of import sources,the impact of the import structure,and the level of production technology in importing countries caused low concentration of CO2emissions in import trade.Overall,the embodied CO2emissions in the export trade of China are higher than those in import trade.As a result,production-based CO2emissions are higher than consumption-based CO2emissions.The difference of 8.96×108t of CO2,which comes mainly from the US,Japan,Germany,and the United Kingdom,accounts for 58.70%of the total difference.Some suggestions,such as improving energy efficiency,alerting high carbon-intensive industries transfer,expanding the market for sharing risks,and prompting the accounting system of consumption-based CO2emissions,are proposed based on the results.
文摘Architecture is defined as a symbiosis of function, aesthetics, technology and economics. This paper introduces the concept of development of technology in architecture for a sustainable society. The concept is based on a systemic link building-climate-energy. The scientific analysis of this link allows us to define three technical levels of modern architecture. The lowest level is represented by low energy architecture that gives priority to the element of energy. Climate is defined only by physical parameters here. It is characterized by the production of emissions that deplete the Biocapacity of the Earth. Higher level of architecture is represented by green architecture which gives equal priority to both energy and ecology. Climate is defined by physical and chemical parameters here. It is characterized by the tendency of reduction of emissions production and move towards environmentally clean energy, material and water sources. Sustainable architecture represents the target program of development of human settlements in the interaction of society-energy-ecology. It is characterized by the balance of categories nature-man-technology and by minimizing the emissions production to the extent of their coverage by the Earth's ecosystems. This paper introduces design strategy for green building. The basic structure of the strategy defines, and internal structure of the strategy emphasizes, principles and concepts of green buildings. In this strategy, the vital role is played by renewable energy sources as a production technology of the capital provided to man by nature.
文摘The conversion of solar energyinto electricity reveals a huge importance in the production of"clean" energy, mainly when applied to decentralized production systems (micro-generation). However, there is the need to develop and optimize these processes in order to turn it more sustainable in economic and technological scoops. The main purpose of this work is to study the solar energy conversion into electricity through photovoltaic cells, characterizing the process efficiencies. This study intends to evaluate the energetic and exergetic efficiencies defining them as indicators in the formulation ofa sustainability index. All the procedures are in a theoretical scope with an illustrative example in the end of this work.
文摘Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV (photovoltaic) technology and actual energy production. Solar energy is widely under-used and one way to reduce this is to improve production in low-energy places with high demand: large cities. According to this option, about 40% of the electricity consumption in the built environment could be produced by solar PV systems and energy storage systems. This paper discusses conditions in the built environment and functional and design qualities enabling an increased diffusion of the technologies In a comparative analysis of PV technologies, the criteria taken into account encompass efficiency of the type of solar cell and commercial availability. Special attention is paid to the design features of different PV systems, like flexibility, colour and transparency that might help in their utilization as integrated in building material and ornaments in modem architecture. The same procedure is followed for electricity storage devices. The preliminary conclusion is that at present the freedom of design is largest for a combination of crystalline silicon PV cells and Li-ion batteries.
文摘Even though Saudi Arabia is the world's largest producer and exporter of petroleum and petroleum based products, it is also blessed with high potential of renewable energy sources like solar and wind. Untapped wind and solar energy sources, which are abundant throughout the kingdom, can be connected and optimally integrated into the grid through the use of smart grid technologies and the expansion of transmission facilities. Smart grid is an auto-balancing, self-monitoring power grid that accepts power from any source of fuel like oil, sun or wind and delivers electricity from suppliers to consumers. It helps to control the use of appliances in order to save energy, reduces cost and increase reliability. This paper describes the attributes of a smart grid and how these act as driving force to modernize the electrical power grid. The necessity of conservation of oil in Saudi Arabia is argued. Moreover, the vast availability of renewable energy sources like solar and wind in Saudi Arabia and advantages in utilizing these sources through smart grid technologies are advocated in this paper.