The sustainable and rapid development of Chinese economy entails fast growth of energy demand. In recent years, power is in short supply: supply and transportation of coal is tense causing a price rise; crude oil imp...The sustainable and rapid development of Chinese economy entails fast growth of energy demand. In recent years, power is in short supply: supply and transportation of coal is tense causing a price rise; crude oil import increases and oil price lingers on high end. These phenomena reflccting energy shortage have become people'hot-debated issues in economic life, and public economic regulators and economists have shown unprecedented concerns about the energy-, environment-, and resources-related issues from the sustainable development point of view.展开更多
This paper introduces the energy consumption status in China, elaborate the affects of the unreasonable energy consumption structure on energy environment and sustainable development of economy. Simultaneously, it poi...This paper introduces the energy consumption status in China, elaborate the affects of the unreasonable energy consumption structure on energy environment and sustainable development of economy. Simultaneously, it points out the solution, i.e., to implement integrated resources planning (IRP)/demand side management (DSM), and gives some recommendations on the way of implementing IRP/DSM.展开更多
Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In t...Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In this paper, the author constructs an identical equation for carbon emission, based on the economic aggregate, the economic structure, the efficiency of energy utilization, the structure of energy consumption, and the coefficient of carbon emission; by applying to LMDI decomposition technology, the author analyzes the carbon emission of China from 1995 to 2007 at industrial level and regional level. The results show that the expansion of economic aggregate is the main reason for China' s rapidly increasing carbon emission and the increase of energy utilization efficiency is the key factor that can hold back the increase of carbon emission. In addition, the change of industrial structure or regional structure and the change of traditional energy structure have limited influence on the carbon emission, and their potentials have not yet been exploited. At the end of this paper, the author proposes the efforts that China should make to reduce carbon emission.展开更多
This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play mo...This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety,environmental protection, enhancement of nuclear power technology, nuclear waste treatment, and disposal, as well as nuclear power plant decommissioning. Based on the safety record and situation of the existing power plants in China, the current status of the development of world nuclear power technology, and the features of the independently designed advanced power plants in China, this paper aims to demonstrate the safety of nuclear power. A nuclear power plant will not cause harm either to the environment and nor to the public according to the real data of radioactivity release, which are obtained from an operational nuclear plant. The development of nuclear power technology can enhance the safety of nuclear power. Further, this paper discusses issues related to the nuclear fuel cycle, the treatment, and disposal strategies of nuclear waste, and the decommissioning of a nuclear power plant, all of which are issues of public concern.展开更多
This study discusses high-carbon characteristics, the unsustainability of China's development, and the fact that China needs to transform its development mode. China's low-carbon transition must include indust...This study discusses high-carbon characteristics, the unsustainability of China's development, and the fact that China needs to transform its development mode. China's low-carbon transition must include industry structure adjustment, energy saving and efficiency increases, energy structure improvement, carbon sink development, adaptation capability, and low-carbon pilot schemes.Low-carbon urbanization is a key measure in China's low-carbon transition. China's urbanization faces high-carbon risks. Thus, this study presents a roadmap for transforming urbanization into a low-carbon one. The transition to low-carbon urbanization is a common trend in the developing world. There is a lot of room for international cooperation.展开更多
Several representative studies on China's carbon emission scenarios in 2050 are compared in scenario settings, methodologies, macro parameters, energy consumption and structure, carbon emissions, and carbon emission ...Several representative studies on China's carbon emission scenarios in 2050 are compared in scenario settings, methodologies, macro parameters, energy consumption and structure, carbon emissions, and carbon emission intensity. Under the baseline scenario of the present policy framework, the future energy structure will be optimized and carbon emission intensity will decrease continually. China's carbon emissions up to 2050 show a significant increase reaching between 11.9 Gt and 16.2 Gt CO2 in 2050. By strengthening a low carbon policy, the optimization of energy structure and the decline in carbon emission intensity will become more obvious within the comparative scenarios, which show a significant decrease in carbon emission until 2050 reaching only between 4.3 Gt and 9.5 Gt CO2 bv then.展开更多
This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005.Sectoral energy use was investigated when regional economic structure change...This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005.Sectoral energy use was investigated when regional economic structure changed significantly.The changes of total primary energy consumption in Beijing are decomposed into production effects,structural effects and intensity effects using the additive version of the logarithmic mean Divisia index (LMDI) method.Aggregate decomposition analysis showed that the major contributor of total effect was made by the production effect fol- lowed by the intensity effect,and the structural effect was rela- tively insignificant.The total and production effects were all posi- tive.In contrast,the structural effect and intensity effect were all negative.Sectoral decomposition investigation indicated that the most effective way to slow down the growth rate of total primary energy consumption (TPEC) was to reduce the production of the energy-intensive industrial sectors and improving industrial en- ergy intensity.The results show that in this period,Beijing's economy has undergone a transformation from an industrial to a service economy.However,the structures of sectoral energy use have not been changed yet,and energy demand should be in- creasing until the energy-intensive industrial production to be reduced and energy intensity of the region reaches a peak.As sequence energy consumption data of sub-sectors are not available, only the fundamental three sectors are considered:agriculture, industry and service.However,further decomposition into secon- dary and tertiary sectors is definitely needed for detailed investi- gations.展开更多
Efforts to speed up China's coal bed methane (CBM) exploration developments related to production safety, optimization of energy structures, prevention of energy waste and reduction of greenhouse gas emissions are...Efforts to speed up China's coal bed methane (CBM) exploration developments related to production safety, optimization of energy structures, prevention of energy waste and reduction of greenhouse gas emissions are all of great significance. In order to strengthen CBM exploration and development in China and to encourage increased growth in the CBM industry, we firstly give a general overview of the recent technological innovations and other developments in CBM exploration in the U.S., Canada and other countries. Using this background information as the starting point, we further present observations and analyses of CBM exploration and development, preferential policies, technical support and implications of R&D for CBM development in China. The results show that the problems related to CBM exploration technology development and lack of a complete set of management policies are still the major issues slowing down the growth of domestic CBM industry. Development of resource exploration and technology, R&D and establishment of favorable government policy to support the industry and the creation of a relevant information platform, etc. are finally recommended.展开更多
It is a consensus of international community to promote the development of low carbon economy in order to face the challenges of climate change. According to the features of nuclear energy, the greenhouse gas (GHG) ...It is a consensus of international community to promote the development of low carbon economy in order to face the challenges of climate change. According to the features of nuclear energy, the greenhouse gas (GHG) emission of nuclear energy chain and other energy chain are compared and analyzed, and the results indicate that the GHG emission of nuclear power chain is the least in all types of power generation. The status of nuclear power development and the potential benefit in GHGs emission reduction by developing nuclear power in China are also analyzed. Active nuclear power development is a smart choice for constructing low-carbon energy structure and for addressing global climate changes in China.展开更多
The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam carbon ratios, the effect of the different excess ai...The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.展开更多
Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based ...Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21 century, the pictures of VLS-PV power genera- tion is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.展开更多
Solar energy is an important renewable energy.Developing photovoltaic power will not only relieve the energy supply-demand contradiction and optimize the energy structure,but also help to restructure this industry.Thi...Solar energy is an important renewable energy.Developing photovoltaic power will not only relieve the energy supply-demand contradiction and optimize the energy structure,but also help to restructure this industry.This paper analyzes the status quo and the development prospects of China's photovoltaic power industry and its existing issues,and puts forward some suggestions and solutions for its healthy and orderly development.展开更多
A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh...A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.展开更多
Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and...Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and pollutant degradation.The photocatalytic activity of semiconductors,however,remains low due to issues like fast recombination of photo-generated electron-hole pairs,limited electron mobility,restricted optical absorption or insufficient active sites.Designing appropriate heterojunctions is proved to be a promising method to address most of these issues and thus to improve the photocatalytic performance.In this review,the working mechanism of various heterojunctions is presented systematically.The most recent advances of strategies in designing and preparing efficient heterojunction photocatalysts are further summarized and some perspectives on the future directions in this field are provided.展开更多
As China's energy intensity fluctuated in recent years, it is necessary to examine whether this fluctuation happened at a regional level. This paper establishes a decomposition model by using the structural decomp...As China's energy intensity fluctuated in recent years, it is necessary to examine whether this fluctuation happened at a regional level. This paper establishes a decomposition model by using the structural decomposition analysis (SDA) method at a regional level. Then this model is employed to empirically analyze the changes of Beijing's energy intensity. The conclusions are as follows: during 2002-2010, except petroleum, the energy intensity decreased and the changes were mostly attributed to the technology changes, while the final use variation actually increased the energy intensity; comparing different periods of 2002-2010, the decline rates of energy intensity for coal and hydropower were decreasing, resulting from the production technology being more energy-intensive than before; the energy intensity changes of petroleum firstly increased substantially and then decreased moderately.展开更多
China has witnessed rapid economic development since 1978, and during the time, energy production and consumption developed at a tremendous speed as well. Energy efficiency which can be measured by energy consumption ...China has witnessed rapid economic development since 1978, and during the time, energy production and consumption developed at a tremendous speed as well. Energy efficiency which can be measured by energy consumption per unit of GDP, however, experienced continuous decrease. Theoretically, the change of energy efficiency can be attributed to industry structural change and technological change. In order to explain the transformation of Chinese energy efficiency, we adopt logarithmic mean Divisia index techniques to decompose changes in energy intensity in the period of 1994-2005. We find that technological change is the dominant contributor in the decline of energy intensity, but the contribution has declined since 2001. The change in industry structure has decreased the energy intensity before 1998, but raised the intensity after 1998. Decomposed technological effects for all sectors indicate that technological progresses in high energy consuming industries such as raw chemical materials and chemical products, smelting and pressing of ferrous metals, manufacture of non-metallic mineral products and household contribute are the principal drivers of China's declining energy intensity.展开更多
In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving ...In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.展开更多
Coals are carbon-rich materials with excellent aromatic nature and macro- molecular structure. They pose great potential as the source of organic chemical feed- stock and high value-added carbonaceous materials in the...Coals are carbon-rich materials with excellent aromatic nature and macro- molecular structure. They pose great potential as the source of organic chemical feed- stock and high value-added carbonaceous materials in the 21st century. As some of the most important analytical methods, thermal analysis (TA) techniques with strong com- petence in materials characterization and reaction mechanism research, have been ex- tensively employed to accumulate the knowledge about coal conversion and utilization in a most effective, efficient and responsible way. Unfortunately, some efforts did not promote the sound growth of a systematic discipline, which might arise from the intrinsic drawback of conventional TA. Proposals on acquiring much more reliable understanding of the mechanism and kinetics of reactions were made in this review.展开更多
Either from the perspective of the finite supply capacity of global resources and energy,or from the perspective of global environment restrictive conditions,developing countries can not repeat the old development roa...Either from the perspective of the finite supply capacity of global resources and energy,or from the perspective of global environment restrictive conditions,developing countries can not repeat the old development road of developed countries,either in view of the international pressure China is currently facing,or in view of China's own resources endowment and stages of development,we must actively face such a challenge of climate change.We must recognize that the issue of climate change may be a great restraint to the present and future eco-social development,and may also be an important driving force and new opportunity to push forward the transformation of development pattern,to take a new road of industrialization and to realize sustainable development.This demands us,on the one hand,to take the Scientific Outlook of Development as the guide to make efforts to control the emission of greenhouse gases and continuously increase the capability of adapting to climatic change,and set up the overall plan to respond to climate change of our country,and on the other hand,we should unswervingly take the road of sustainable development,save energy,optimize energy structure and strengthen biological protection in slowing and adapting to climate change.展开更多
The lattice parameters, elastic constants, cohesive energy, structural energy differences, as well as the properties of point defects and planar defects of hexagonal closepacked yttrium (hcpY) have been studied with...The lattice parameters, elastic constants, cohesive energy, structural energy differences, as well as the properties of point defects and planar defects of hexagonal closepacked yttrium (hcpY) have been studied with ab initio density functional theory for constructing an ex tensive database. Based on an analytical bondorder poial scheme, empirical manybody interatomic potential for hcpY has been developed. The model is fitted to some properties of Y, e.g., the lattice parameters, elastic constants, bulk modulus, cohesive energy, vacancy formation energy, and the structural energy differences. The present potential has ability to reproduce defect properties including the selfinterstitial atoms formation energies, vacancy formation energy, divacancy binding energy, as well as the bulk properties and the thermal dynamic properties.展开更多
文摘The sustainable and rapid development of Chinese economy entails fast growth of energy demand. In recent years, power is in short supply: supply and transportation of coal is tense causing a price rise; crude oil import increases and oil price lingers on high end. These phenomena reflccting energy shortage have become people'hot-debated issues in economic life, and public economic regulators and economists have shown unprecedented concerns about the energy-, environment-, and resources-related issues from the sustainable development point of view.
文摘This paper introduces the energy consumption status in China, elaborate the affects of the unreasonable energy consumption structure on energy environment and sustainable development of economy. Simultaneously, it points out the solution, i.e., to implement integrated resources planning (IRP)/demand side management (DSM), and gives some recommendations on the way of implementing IRP/DSM.
文摘Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In this paper, the author constructs an identical equation for carbon emission, based on the economic aggregate, the economic structure, the efficiency of energy utilization, the structure of energy consumption, and the coefficient of carbon emission; by applying to LMDI decomposition technology, the author analyzes the carbon emission of China from 1995 to 2007 at industrial level and regional level. The results show that the expansion of economic aggregate is the main reason for China' s rapidly increasing carbon emission and the increase of energy utilization efficiency is the key factor that can hold back the increase of carbon emission. In addition, the change of industrial structure or regional structure and the change of traditional energy structure have limited influence on the carbon emission, and their potentials have not yet been exploited. At the end of this paper, the author proposes the efforts that China should make to reduce carbon emission.
文摘This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety,environmental protection, enhancement of nuclear power technology, nuclear waste treatment, and disposal, as well as nuclear power plant decommissioning. Based on the safety record and situation of the existing power plants in China, the current status of the development of world nuclear power technology, and the features of the independently designed advanced power plants in China, this paper aims to demonstrate the safety of nuclear power. A nuclear power plant will not cause harm either to the environment and nor to the public according to the real data of radioactivity release, which are obtained from an operational nuclear plant. The development of nuclear power technology can enhance the safety of nuclear power. Further, this paper discusses issues related to the nuclear fuel cycle, the treatment, and disposal strategies of nuclear waste, and the decommissioning of a nuclear power plant, all of which are issues of public concern.
文摘This study discusses high-carbon characteristics, the unsustainability of China's development, and the fact that China needs to transform its development mode. China's low-carbon transition must include industry structure adjustment, energy saving and efficiency increases, energy structure improvement, carbon sink development, adaptation capability, and low-carbon pilot schemes.Low-carbon urbanization is a key measure in China's low-carbon transition. China's urbanization faces high-carbon risks. Thus, this study presents a roadmap for transforming urbanization into a low-carbon one. The transition to low-carbon urbanization is a common trend in the developing world. There is a lot of room for international cooperation.
基金supported by the "Low Carbon Economy Academy Special Programs,Tsinghua University Independent Research Plan"
文摘Several representative studies on China's carbon emission scenarios in 2050 are compared in scenario settings, methodologies, macro parameters, energy consumption and structure, carbon emissions, and carbon emission intensity. Under the baseline scenario of the present policy framework, the future energy structure will be optimized and carbon emission intensity will decrease continually. China's carbon emissions up to 2050 show a significant increase reaching between 11.9 Gt and 16.2 Gt CO2 in 2050. By strengthening a low carbon policy, the optimization of energy structure and the decline in carbon emission intensity will become more obvious within the comparative scenarios, which show a significant decrease in carbon emission until 2050 reaching only between 4.3 Gt and 9.5 Gt CO2 bv then.
文摘This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005.Sectoral energy use was investigated when regional economic structure changed significantly.The changes of total primary energy consumption in Beijing are decomposed into production effects,structural effects and intensity effects using the additive version of the logarithmic mean Divisia index (LMDI) method.Aggregate decomposition analysis showed that the major contributor of total effect was made by the production effect fol- lowed by the intensity effect,and the structural effect was rela- tively insignificant.The total and production effects were all posi- tive.In contrast,the structural effect and intensity effect were all negative.Sectoral decomposition investigation indicated that the most effective way to slow down the growth rate of total primary energy consumption (TPEC) was to reduce the production of the energy-intensive industrial sectors and improving industrial en- ergy intensity.The results show that in this period,Beijing's economy has undergone a transformation from an industrial to a service economy.However,the structures of sectoral energy use have not been changed yet,and energy demand should be in- creasing until the energy-intensive industrial production to be reduced and energy intensity of the region reaches a peak.As sequence energy consumption data of sub-sectors are not available, only the fundamental three sectors are considered:agriculture, industry and service.However,further decomposition into secon- dary and tertiary sectors is definitely needed for detailed investi- gations.
基金the continuous supply of funds to the National Science and Technology Major Project-Developing Great Oil & Gas Field and Coal Bed Gas (No. 2008ZX05)
文摘Efforts to speed up China's coal bed methane (CBM) exploration developments related to production safety, optimization of energy structures, prevention of energy waste and reduction of greenhouse gas emissions are all of great significance. In order to strengthen CBM exploration and development in China and to encourage increased growth in the CBM industry, we firstly give a general overview of the recent technological innovations and other developments in CBM exploration in the U.S., Canada and other countries. Using this background information as the starting point, we further present observations and analyses of CBM exploration and development, preferential policies, technical support and implications of R&D for CBM development in China. The results show that the problems related to CBM exploration technology development and lack of a complete set of management policies are still the major issues slowing down the growth of domestic CBM industry. Development of resource exploration and technology, R&D and establishment of favorable government policy to support the industry and the creation of a relevant information platform, etc. are finally recommended.
基金supported by the consulting project of Chinese Academy of Engineering entitled "The Key Issues of GHGs Emission for Different Power Energy in China"
文摘It is a consensus of international community to promote the development of low carbon economy in order to face the challenges of climate change. According to the features of nuclear energy, the greenhouse gas (GHG) emission of nuclear energy chain and other energy chain are compared and analyzed, and the results indicate that the GHG emission of nuclear power chain is the least in all types of power generation. The status of nuclear power development and the potential benefit in GHGs emission reduction by developing nuclear power in China are also analyzed. Active nuclear power development is a smart choice for constructing low-carbon energy structure and for addressing global climate changes in China.
文摘The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.
文摘Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21 century, the pictures of VLS-PV power genera- tion is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.
文摘Solar energy is an important renewable energy.Developing photovoltaic power will not only relieve the energy supply-demand contradiction and optimize the energy structure,but also help to restructure this industry.This paper analyzes the status quo and the development prospects of China's photovoltaic power industry and its existing issues,and puts forward some suggestions and solutions for its healthy and orderly development.
基金sponsored by National Key Basic Research Program of China (973 Program) (2012CB215102) for WuUS National Science Foundation Award (1135872) for VaraiyaHong Kong RGC Theme-based Research Project (T23-701/14-N) for Hui
文摘A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.
文摘Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and pollutant degradation.The photocatalytic activity of semiconductors,however,remains low due to issues like fast recombination of photo-generated electron-hole pairs,limited electron mobility,restricted optical absorption or insufficient active sites.Designing appropriate heterojunctions is proved to be a promising method to address most of these issues and thus to improve the photocatalytic performance.In this review,the working mechanism of various heterojunctions is presented systematically.The most recent advances of strategies in designing and preparing efficient heterojunction photocatalysts are further summarized and some perspectives on the future directions in this field are provided.
基金Supported by Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA05150600)National Natural Science Foundation of China (No. 71273027 and No. 70903066)Beijing Planning Office of Philosophy and Social Science (No. 11JGC105)
文摘As China's energy intensity fluctuated in recent years, it is necessary to examine whether this fluctuation happened at a regional level. This paper establishes a decomposition model by using the structural decomposition analysis (SDA) method at a regional level. Then this model is employed to empirically analyze the changes of Beijing's energy intensity. The conclusions are as follows: during 2002-2010, except petroleum, the energy intensity decreased and the changes were mostly attributed to the technology changes, while the final use variation actually increased the energy intensity; comparing different periods of 2002-2010, the decline rates of energy intensity for coal and hydropower were decreasing, resulting from the production technology being more energy-intensive than before; the energy intensity changes of petroleum firstly increased substantially and then decreased moderately.
基金funded by National Science Foundation (Grant No.40535027,40871065)program of Enviromental Education Base of Chinese University Students
文摘China has witnessed rapid economic development since 1978, and during the time, energy production and consumption developed at a tremendous speed as well. Energy efficiency which can be measured by energy consumption per unit of GDP, however, experienced continuous decrease. Theoretically, the change of energy efficiency can be attributed to industry structural change and technological change. In order to explain the transformation of Chinese energy efficiency, we adopt logarithmic mean Divisia index techniques to decompose changes in energy intensity in the period of 1994-2005. We find that technological change is the dominant contributor in the decline of energy intensity, but the contribution has declined since 2001. The change in industry structure has decreased the energy intensity before 1998, but raised the intensity after 1998. Decomposed technological effects for all sectors indicate that technological progresses in high energy consuming industries such as raw chemical materials and chemical products, smelting and pressing of ferrous metals, manufacture of non-metallic mineral products and household contribute are the principal drivers of China's declining energy intensity.
基金Project(60673164)supported by the National Natural Science Foundation of ChinaProject(20060533057)supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.
文摘Coals are carbon-rich materials with excellent aromatic nature and macro- molecular structure. They pose great potential as the source of organic chemical feed- stock and high value-added carbonaceous materials in the 21st century. As some of the most important analytical methods, thermal analysis (TA) techniques with strong com- petence in materials characterization and reaction mechanism research, have been ex- tensively employed to accumulate the knowledge about coal conversion and utilization in a most effective, efficient and responsible way. Unfortunately, some efforts did not promote the sound growth of a systematic discipline, which might arise from the intrinsic drawback of conventional TA. Proposals on acquiring much more reliable understanding of the mechanism and kinetics of reactions were made in this review.
文摘Either from the perspective of the finite supply capacity of global resources and energy,or from the perspective of global environment restrictive conditions,developing countries can not repeat the old development road of developed countries,either in view of the international pressure China is currently facing,or in view of China's own resources endowment and stages of development,we must actively face such a challenge of climate change.We must recognize that the issue of climate change may be a great restraint to the present and future eco-social development,and may also be an important driving force and new opportunity to push forward the transformation of development pattern,to take a new road of industrialization and to realize sustainable development.This demands us,on the one hand,to take the Scientific Outlook of Development as the guide to make efforts to control the emission of greenhouse gases and continuously increase the capability of adapting to climatic change,and set up the overall plan to respond to climate change of our country,and on the other hand,we should unswervingly take the road of sustainable development,save energy,optimize energy structure and strengthen biological protection in slowing and adapting to climate change.
文摘The lattice parameters, elastic constants, cohesive energy, structural energy differences, as well as the properties of point defects and planar defects of hexagonal closepacked yttrium (hcpY) have been studied with ab initio density functional theory for constructing an ex tensive database. Based on an analytical bondorder poial scheme, empirical manybody interatomic potential for hcpY has been developed. The model is fitted to some properties of Y, e.g., the lattice parameters, elastic constants, bulk modulus, cohesive energy, vacancy formation energy, and the structural energy differences. The present potential has ability to reproduce defect properties including the selfinterstitial atoms formation energies, vacancy formation energy, divacancy binding energy, as well as the bulk properties and the thermal dynamic properties.