Objective To investigate the performance of dual-source computed tomography (DSCT) using high-pitch spiral fliPS) mode for coronary stents patency. Methods We conducted a prospective study on 120 patients with 260 ...Objective To investigate the performance of dual-source computed tomography (DSCT) using high-pitch spiral fliPS) mode for coronary stents patency. Methods We conducted a prospective study on 120 patients with 260 previous stents implanted due to recurred suspicious symptoms of angina scheduled for invasive coronary angiography (ICA), while DSCT were conducted using HPS mode. Results There was no significant impact of age, body mass index or heat rate (HR) on image quality (P 〉 0.05), while HR variability had a slight impact on that (P 〈 0.05). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) of DSCT in detection of in-stent restenosis (ISR) based per-patient were 92.3%, 96.7%, 88.9%, and 97.8%, respectively. And those based per-stent were 87%, 96.8%, 83.3%, and 97.7% with un-assessment stents, 97.4%, 99.5%, 97.4%, and 99.5% without un-assessment stents. There was significant differ- ence on sensitivity, specificity, PPV and NPV between diameter 〉 3.0 mm group (93.3%, 97.9%, 87.5%, and 98.9%) and diameter 〈 3.0 mm group (80%, 93.3%, 80.0%, and 93.3%) (P 〈 0.05), and that between stent number 〉 3 group (82.3%, 77.8%, 66.7%, and 60%) with 〈 3 group (97.3%, 80%, 96.5%, and 75%). The effective dose of DSCT (1.4 ± 0.5 mSv) is significantly less than that by invasive coronary angiography [4.0 ± 0.8 mSv (P 〈 0.01)]. Conclusion DSCT using HPS mode provides good diagnostic performance on stent patency with lower effective dose in patients with HR 〈 65 beats/rain.展开更多
This paper aims at presenting an application developed in Java for optimizing the design of centralized solar water heating systems with forced circulation, based on the f-chart method. The program uses data from the ...This paper aims at presenting an application developed in Java for optimizing the design of centralized solar water heating systems with forced circulation, based on the f-chart method. The program uses data from the Brazilian Solar Atlas, performance data of flat plate collectors and thermal reservoirs from the standardized tests run within the Brazilian Labeling Program, and values of water consumption of appliances defined by the ABNT. The program finds the inclination of the collector that maximizes the annual solar fraction, or for the winter, and enables the use of arrays in series and parallel collectors. From the investment costs and O & M (operations and maintenance) of solar heating systems, the program carries out economical analysis using classical parameters as net present value, discounted payback and internal rate of return. The program was validated through examples from the book of Duffle & Beckman and also by comparison with the results from a project developed at UFRGS, having obtained good agreement.展开更多
ZnO is a typical direct wide-bandgap semiconductor material, which has various morphologies and unique physical and chemical properties, and is widely used in the fields of energy, information technology, biomedicine,...ZnO is a typical direct wide-bandgap semiconductor material, which has various morphologies and unique physical and chemical properties, and is widely used in the fields of energy, information technology, biomedicine, and others. The precise design and controllable fabrication of nanostructures have gradually become important avenues to further enhancing the performance of Zn O-based functional nanodevices. This paper introduces the continuous development of patterning technologies, provides a comprehensive review of the optical lithography and laser interference lithography techniques for the controllable fabrication of Zn O nanostructures, and elaborates on the potential applications of such patterned Zn O nanostructures in solar energy, water splitting, light emission devices, and nanogenerators. Patterned Zn O nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure, enlarged surface area, and improved light capture ability, which realize the efficient carrier regulation,achieve highly efficient energy conversion, and meet the diverse requirements of functional nanodevices. The patterning techniques proposed for the precise design of Zn O nanostructures not only have important guiding significance for the controllable fabrication of complex nanostructures of other materials, but also open up a new route for the further development of functional nanostructures.展开更多
Most current research on nanocomposites has focused on their bulk attributes, i.e., electrical, microwave, thermal, and mechanical properties. In practical applications, surface properties such as robustness against e...Most current research on nanocomposites has focused on their bulk attributes, i.e., electrical, microwave, thermal, and mechanical properties. In practical applications, surface properties such as robustness against environmental contamination are critical design considerations if intrinsic properties are to be maintained. The aim of this research is to combine the bulk properties of nanocomposites with the superhydrophobic surface properties provided by imprinting techniques to create a single multi-functional system with enhanced bulk properties. We report the development of a highly conductive superhydrophobic nanotube composite, which is directly superimposed with a durable dual hole pattern through imprinting techniques. The dual hole pattern avoids the use of high slenderness ratio structures resulting in a surface which is robust against physical damage. Its stable superhydrophobic properties were characterized both theoretically and experimentally. By incorporating high aspect ratio carbon nanotubes (CNTs), the dual patterned composites can also be effectively used for anti-icing and deicing applications where their superhydrophobic surface suppresses ice formation and their quick electric heating response at low voltage eliminates remaining frost. In addition, superior electromagnetic interference (EMI) shielding effectiveness (SE) was attained, with one of the highest values ever reported in the literature.展开更多
文摘Objective To investigate the performance of dual-source computed tomography (DSCT) using high-pitch spiral fliPS) mode for coronary stents patency. Methods We conducted a prospective study on 120 patients with 260 previous stents implanted due to recurred suspicious symptoms of angina scheduled for invasive coronary angiography (ICA), while DSCT were conducted using HPS mode. Results There was no significant impact of age, body mass index or heat rate (HR) on image quality (P 〉 0.05), while HR variability had a slight impact on that (P 〈 0.05). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) of DSCT in detection of in-stent restenosis (ISR) based per-patient were 92.3%, 96.7%, 88.9%, and 97.8%, respectively. And those based per-stent were 87%, 96.8%, 83.3%, and 97.7% with un-assessment stents, 97.4%, 99.5%, 97.4%, and 99.5% without un-assessment stents. There was significant differ- ence on sensitivity, specificity, PPV and NPV between diameter 〉 3.0 mm group (93.3%, 97.9%, 87.5%, and 98.9%) and diameter 〈 3.0 mm group (80%, 93.3%, 80.0%, and 93.3%) (P 〈 0.05), and that between stent number 〉 3 group (82.3%, 77.8%, 66.7%, and 60%) with 〈 3 group (97.3%, 80%, 96.5%, and 75%). The effective dose of DSCT (1.4 ± 0.5 mSv) is significantly less than that by invasive coronary angiography [4.0 ± 0.8 mSv (P 〈 0.01)]. Conclusion DSCT using HPS mode provides good diagnostic performance on stent patency with lower effective dose in patients with HR 〈 65 beats/rain.
文摘This paper aims at presenting an application developed in Java for optimizing the design of centralized solar water heating systems with forced circulation, based on the f-chart method. The program uses data from the Brazilian Solar Atlas, performance data of flat plate collectors and thermal reservoirs from the standardized tests run within the Brazilian Labeling Program, and values of water consumption of appliances defined by the ABNT. The program finds the inclination of the collector that maximizes the annual solar fraction, or for the winter, and enables the use of arrays in series and parallel collectors. From the investment costs and O & M (operations and maintenance) of solar heating systems, the program carries out economical analysis using classical parameters as net present value, discounted payback and internal rate of return. The program was validated through examples from the book of Duffle & Beckman and also by comparison with the results from a project developed at UFRGS, having obtained good agreement.
基金supported by the National Key Research and Development Program of China(2013CB932602 and 2016YFA0202701)the Program of Introducing Talents of Discipline to Universities(B14003)+2 种基金the National Natural Science Foundation of China(51527802,51232001,51372020 and 51602020)Beijing Municipal Science&Technology Commission(Z151100003315021)China Postdoctoral Science Foundation(2016M600039)
文摘ZnO is a typical direct wide-bandgap semiconductor material, which has various morphologies and unique physical and chemical properties, and is widely used in the fields of energy, information technology, biomedicine, and others. The precise design and controllable fabrication of nanostructures have gradually become important avenues to further enhancing the performance of Zn O-based functional nanodevices. This paper introduces the continuous development of patterning technologies, provides a comprehensive review of the optical lithography and laser interference lithography techniques for the controllable fabrication of Zn O nanostructures, and elaborates on the potential applications of such patterned Zn O nanostructures in solar energy, water splitting, light emission devices, and nanogenerators. Patterned Zn O nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure, enlarged surface area, and improved light capture ability, which realize the efficient carrier regulation,achieve highly efficient energy conversion, and meet the diverse requirements of functional nanodevices. The patterning techniques proposed for the precise design of Zn O nanostructures not only have important guiding significance for the controllable fabrication of complex nanostructures of other materials, but also open up a new route for the further development of functional nanostructures.
文摘Most current research on nanocomposites has focused on their bulk attributes, i.e., electrical, microwave, thermal, and mechanical properties. In practical applications, surface properties such as robustness against environmental contamination are critical design considerations if intrinsic properties are to be maintained. The aim of this research is to combine the bulk properties of nanocomposites with the superhydrophobic surface properties provided by imprinting techniques to create a single multi-functional system with enhanced bulk properties. We report the development of a highly conductive superhydrophobic nanotube composite, which is directly superimposed with a durable dual hole pattern through imprinting techniques. The dual hole pattern avoids the use of high slenderness ratio structures resulting in a surface which is robust against physical damage. Its stable superhydrophobic properties were characterized both theoretically and experimentally. By incorporating high aspect ratio carbon nanotubes (CNTs), the dual patterned composites can also be effectively used for anti-icing and deicing applications where their superhydrophobic surface suppresses ice formation and their quick electric heating response at low voltage eliminates remaining frost. In addition, superior electromagnetic interference (EMI) shielding effectiveness (SE) was attained, with one of the highest values ever reported in the literature.