期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
四能级混合共振系统量子干涉现象理论分析
1
作者 王立 张小安 牛超英 《雁北师范学院学报》 2003年第2期60-62,共3页
对原子和分子混合共振四能级系统的量子干涉增强效应进行理论分析 ,在单模强激光场作用下发生碰撞能量转移 ,使粒子在相应的能级上产生重新布局 ,并在一定条件下导致缀饰态能级交叠 ,结论与实验观测一致 .
关键词 能级混合共振系统 量子干涉 碰撞 能级 量子光学
下载PDF
缓冲气体对碱金属蒸汽激光器工作特性的影响 被引量:4
2
作者 徐艳 陈飞 +4 位作者 谢冀江 李殿军 杨贵龙 高飞 郭劲 《红外与激光工程》 EI CSCD 北大核心 2015年第2期455-460,共6页
基于端面泵浦碱金属蒸汽激光器的速率方程模型,研究了碱金属蒸汽激光器在不同缓冲气体环境中的工作特性。通过优化输出镜反射率、气体压强等参量,获得了激光器在不同缓冲气体中的输出功率随温度的变化曲线。结果表明:有烃DPAL中,最佳输... 基于端面泵浦碱金属蒸汽激光器的速率方程模型,研究了碱金属蒸汽激光器在不同缓冲气体环境中的工作特性。通过优化输出镜反射率、气体压强等参量,获得了激光器在不同缓冲气体中的输出功率随温度的变化曲线。结果表明:有烃DPAL中,最佳输出功率和运行温度随能级混合速率的增大而分别增大和减小,而且激光器在不同烃类气体下的最佳工作状态可用准二能级工作曲线描述;无烃DPAL中,氦气同位素3He可以大幅减小激光器的氦气压强,而且能够提高Rb-DPAL的输出功率,但是K-DPAL在3He中的输出功率略低。模拟结果与已报道的实验现象有较好的符合,可为实验研究提供理论指导。 展开更多
关键词 碱金属蒸汽激光器 缓冲气体 碰撞展宽 能级混合
下载PDF
Supercapacitors and Battery Energy Management Based on New European Driving Cycle 被引量:1
3
作者 Mamadou Bailo Camaral Brayima Dakyo Hamid Gualous 《Journal of Energy and Power Engineering》 2012年第2期168-177,共10页
This paper presents a new strategy of embedded energy management between battery and supercapacitors (SC) for hybrid electric vehicles (HEV) applications. This proposal is due to the present trend in the field, kn... This paper presents a new strategy of embedded energy management between battery and supercapacitors (SC) for hybrid electric vehicles (HEV) applications. This proposal is due to the present trend in the field, knowing that the major drawback of the HEV is the autonomy problem. Thus, using supercapacitors and battery with a good energy management improves the HEV performances. The main contribution of this paper is focused on DC-bus voltage and currents control strategies based on polynomial controller. These strategies are implemented in PICI8F4431 microcontroller for DC/DC converters control. Due to reasons of cost and available components (no optimized), such as the battery and power semiconductors (IGBT), the experimental tests are carried out in reduced scale (2.7 kW). Through some simulations and experimental results obtained in reduced scale, the authors present an improved energy management strategy for HEV. 展开更多
关键词 BATTERY electric machine energy storage SUPERCAPACITORS polynomial control hybrid electric vehicles DC/DCconverter.
下载PDF
Comparison of the topologies for a hybrid energy-storage system of electric vehicles via a novel optimization method 被引量:1
4
作者 ZHANG Shuo XIONG Rui ZHOU Xuan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第7期1173-1185,共13页
The combination of batteries and ultracapacitors has become an effective solution to satisfy the requirements of high power density and high energy density for the energy-storage system of electric vehicles.Three aspe... The combination of batteries and ultracapacitors has become an effective solution to satisfy the requirements of high power density and high energy density for the energy-storage system of electric vehicles.Three aspects of such combination efforts were considered for evaluating the four types of hybrid energy-storage system(HESS)topologies.First,a novel optimization framework was proposed and implemented to optimize the voltage level of a battery pack and an ultracapacitor pack for the four types of HESS topologies.During the optimization process,the dynamic programming(DP)algorithm was iteratively applied to determine the optimal control actions.The simulation results with DP were used to evaluate the energy efficiency of different HESS topologies at different voltage levels.Second,the optimized voltage level of the battery and ultracapacitor in each topology indicates that a higher voltage level usually results in a better system performance.The simulation results also illustrate that the optimized rated voltage level of the battery pack is approximately 499.5 V,while for the ultracapacitor pack,the optimized voltage level is at its maximum allowed value.Note that the constraint of the battery voltage is initialized at200–600 V.Third,the control rules for different HESS topologies were obtained through the systematic analysis of the simulation results.In addition,advantages and disadvantages of the four topologies were summarized through evaluation of the efficiency and operating currents of the batteries and the ultracapacitor. 展开更多
关键词 electric vehicles lithium-ion battery ULTRACAPACITOR hybrid energy-storage system TOPOLOGY dynamic programming
原文传递
Ni_(3)S_(2)@NiWO_(4)nanoarrays towards all-solid-state hybrid supercapacitor with record-high energy density 被引量:4
5
作者 Fangshuai Chen Xiaoya Cui +8 位作者 Chang Liu Baihua Cui Shuming Dou Jie Xu Siliang Liu Hong Zhang Yida Deng Yanan Chen Wenbin Hu 《Science China Materials》 SCIE EI CAS CSCD 2021年第4期852-860,共9页
The rational design and synthesis of hybrid-type electrode nanomaterials are significant for their diverse applications,including their potential usage as high-efficiency nanoarchitectures for supercapacitors(SCs)as a... The rational design and synthesis of hybrid-type electrode nanomaterials are significant for their diverse applications,including their potential usage as high-efficiency nanoarchitectures for supercapacitors(SCs)as a class of promising energy-storage systems for powering next-generation electric vehicles and electronic devices.Here,we reported a facile and controllable synthesis of core-shell Ni_(3)S_(2)@NiWO_(4)nanoarrays to fabricate a freestanding electrode for hybrid SCs.Impressively,the as-prepared freestanding Ni_(3)S_(2)@NiWO_(4)electrode presents an ultrahigh areal capacity of 2032μA h cm^(-2)at 5 mA cm^(-2),and a capacity retention of 63.6%even when the current density increased up to 50 mA cm^(-2).Remarkably,the Ni_(3)S_(2)@NiWO_(4)nanoarraybased hybrid SC delivers a maximum energy density of 1.283 mW h cm^(-2)at 3.128 mW cm^(-2)and a maximum power density of 41.105 mW cm^(-2)at 0.753 mW h cm^(-2).Furthermore,the hybrid SC exhibits a capacity retention of 89.6%even after continuous 10,000 cycles,proving its superior stability.This study provides a facile pathway to rationally design a variety of core-shell metal nanostructures for high-performance energy storage devices. 展开更多
关键词 core-shell nanoarrays freestanding electrode maximum energy density hybrid SC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部