Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recover...Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies flesh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of flesh air.展开更多
This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consump...This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.展开更多
The paper deals with the energy and indoor comfort on buildings of UPF (University ofPasso Fundo), located in southern Brazil, in order to improve the eco-efficiency concepts in the university's building stock, rei...The paper deals with the energy and indoor comfort on buildings of UPF (University ofPasso Fundo), located in southern Brazil, in order to improve the eco-efficiency concepts in the university's building stock, reinforcing its responsibility towards sustainable development. The factors that affect thermal performance and the energy consumption of two case studies were identified, including the general characteristics of the envelope and the indoor conditions. The simulations with DesignBuilder software compare the energy and thermal performance of both cases: those results allow the identification of their positive and negative aspects, as well as making a co-relation with the students' sensations of comfort--obtained through PMV (predicted mean vote). The research indicates that it will be possible to improve eco-efficiency of existing and new buildings and campuses by retrofitting and upgrading it with regard to better indoor conditions that really correspond to climate conditions (hot and humid summers, and cold and damp winters), using passive strategies for heating and cooling and at the same time to improve rational use of natural resources and to reduce the environmental impact. Probably, giving comfortable conditions to the users will increase energy consumption, but there is a potential reduction of lighting and equipment that could minimize this impact.展开更多
基金Project supported by Grant-in-Aid for Scientific Research (JSPS KAKENHI for Young Scientists (S), 21676005)
文摘Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies flesh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of flesh air.
文摘This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.
文摘The paper deals with the energy and indoor comfort on buildings of UPF (University ofPasso Fundo), located in southern Brazil, in order to improve the eco-efficiency concepts in the university's building stock, reinforcing its responsibility towards sustainable development. The factors that affect thermal performance and the energy consumption of two case studies were identified, including the general characteristics of the envelope and the indoor conditions. The simulations with DesignBuilder software compare the energy and thermal performance of both cases: those results allow the identification of their positive and negative aspects, as well as making a co-relation with the students' sensations of comfort--obtained through PMV (predicted mean vote). The research indicates that it will be possible to improve eco-efficiency of existing and new buildings and campuses by retrofitting and upgrading it with regard to better indoor conditions that really correspond to climate conditions (hot and humid summers, and cold and damp winters), using passive strategies for heating and cooling and at the same time to improve rational use of natural resources and to reduce the environmental impact. Probably, giving comfortable conditions to the users will increase energy consumption, but there is a potential reduction of lighting and equipment that could minimize this impact.