The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in...The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in the cooling mode and a higher evaporating temperature in the heating mode,and the ground heat exchanger(GHE)in the DX GSHP has a low thermal resistance.Therefore,the coefficient of performance(COP)of the DX GSHP is higher than that of the GSHP.In addition,the system performance of the DX GSHP system is higher than that of the conventional GSHP system because there are no secondary solution loops and water circulating pumps in the DX GSHP system.The experimental energy performance of the DX GSHP system is also investigated based on the actual operational data.The tested DX GSHP system is installed in Xiangtan,China.The U-vertical GHE of the DX GSHP is buried in a water well.The length and the outside nominal diameter of the GHE are 42 m and 12.7 mm,respectively.The experimental results show that the maximum(COP)and the average COP of the DX GSHP system in the heating mode are 5.95 and 4.72,respectively.展开更多
This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry ...This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.展开更多
In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter spli...In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.展开更多
Too high energy consumption is widely recognized to be a critical problem in large-scale parallel computing systems.The LogP-based energy-saving model and the frequency scaling method were proposed to reduce energy co...Too high energy consumption is widely recognized to be a critical problem in large-scale parallel computing systems.The LogP-based energy-saving model and the frequency scaling method were proposed to reduce energy consumption analytically and systematically for other two representative barrier algorithms:tournament barrier and central counter barrier.Furthermore,energy optimization methods of these two barrier algorithms were implemented on parallel computing platform.The experimental results validate the effectiveness of the energy optimization methods.67.12% and 70.95% energy savings are obtained respectively for tournament barrier and central counter barrier on platforms with 2048 processes with 1.55%?8.80% performance loss.Furthermore,LogP-based energy-saving analytical model for these two barrier algorithms is highly accurate as the predicted energy savings are within 9.67% of the results obtained by simulation.展开更多
The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the tr...The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the train traction characteristics and optimization design of integrated research has carried out in this paper, by using OPENTRACK software simulation to verify the optimization results according to different line features finally. The aim of this paper is to explore ways and methods of traction strategy optimization under the condition of trains timing energy saving. The main research contents of this paper are based on the research status at home and abroad, first of all, the different operating modes of the train running on the line are analysed, including the time saving mode, the energy saving mode and timing energy saving mode, and quantitative analysed the influence of different operation modes on vehicle energy consumption. The influence factors and traction calculation method of energy consumption of train running are studied. Firstly, the factors that affect the energy consumption of the train are analysed, including the basic facilities and transport organization mode. On the basis of this, the train load and running status of the train are analysed, and the model of the train movement and energy consumption are calculated. The OPENTRACK software is used to establish the actual circuit model, and the simulation is verified. The results show that the reasonable operation mode of the train operation mode can greatly reduce the energy consumption.展开更多
Aiming at the contradiction between the depth control accuracy and the energy consumption of the self-sustaining intelligent buoy,a low energy consumption depth control method based on historical array for real-time g...Aiming at the contradiction between the depth control accuracy and the energy consumption of the self-sustaining intelligent buoy,a low energy consumption depth control method based on historical array for real-time geostrophic oceanography(Argo)data is proposed.As known from the buoy kinematic model,the volume of the external oil sac only depends on the density and temperature of seawater at hovering depth.Hence,we use historical Argo data to extract the fitting curves of density and temperature,and obtain the relationship between the hovering depth and the volume of the external oil sac.Genetic algorithm is used to carry out the optimal energy consumption motion planning for the depth control process,and the specific motion strategy of depth control process is obtained.Compared with dual closed-loop fuzzy PID control method and radial basis function(RBF)-PID method,the proposed method reduces energy consumption to 1/50 with the same accuracy.Finally,a hardware-in-the-loop simulation system was used to verify this method.When the error caused by fitting curves is not considered,the average error is 2.62 m,the energy consumption is 3.214×10^(4)J,and the error of energy consumption is only 0.65%.It shows the effectiveness and reliability of the method as well as the advantages of comprehensively considering the accuracy and energy consumption.展开更多
To understand the processes and energy dissipation performance caused by turbulence during the wave run-up over a stepped revetment,hydraulic model tests with steady flow conditions are conducted and correlated with u...To understand the processes and energy dissipation performance caused by turbulence during the wave run-up over a stepped revetment,hydraulic model tests with steady flow conditions are conducted and correlated with unsteady flow conditions of the wave run-up within a short time frame.Under irregular waves,the run-up reduction over a stepped revetment is dependent on the Iribarren number and decreases for decreasing Iribarren numbers.Velocity gradients are found to be similar in a steady and unsteady flow regime near the pseudo-bottom.展开更多
Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in hig...Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in high-efficiency energy utilization and energy conservation.In this paper,the entransy dissipation analysis is conducted for the separated heat pipe system,and the result indicates that minimum thermal resistance principle is applicable to the optimization of the separated heat pipe system.Whether in the applications of waste heat recovery or air conditioning,the smaller the entransy-dissipation-based thermal re-sistance of the separated heat pipe system is,the better the heat transfer performance will be.Based on the minimum thermal resistance principle,the optimal area allocation relationship between evaporator and condenser is deduced,which is numeri-cally verified in the optimation design of separated heat pipe system.展开更多
Self-powered chaos signal generator is potentially useful in future medical system,such as low cost portable human healthy monitor and treatment without external power source.For both functional and power unit,the pow...Self-powered chaos signal generator is potentially useful in future medical system,such as low cost portable human healthy monitor and treatment without external power source.For both functional and power unit,the power level of electric energy generator and consumption is a key factor for self-powered system.In this paper,we have investigated the power consumption of three typical output modes of a simple chaos circuit.Analytical analysis for power consumption of fixed output mode is obtained for evaluating the power characteristics of chaos signal generator.Numerical calculations are given for predicting the power characteristics of periodical and chaotic output modes.This study is important for not only understanding the power consumption of chaos signal generator,but also guiding new self-powered chaos signal generator design.展开更多
In 1996, Department of Engineering and MaterialSciences,National Natural Science Foundation (NSFC), accepted the suggestion made by some experienced members of CAS and published the key support project Green Architect...In 1996, Department of Engineering and MaterialSciences,National Natural Science Foundation (NSFC), accepted the suggestion made by some experienced members of CAS and published the key support project Green Architecture System and Dwelling Pattern in application guide for NSFC project. The project research group, led by Prof.展开更多
基金The National Key Technologies R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2006BAJ04B04,2006BAJ04A05,2006BAJ04A13)
文摘The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in the cooling mode and a higher evaporating temperature in the heating mode,and the ground heat exchanger(GHE)in the DX GSHP has a low thermal resistance.Therefore,the coefficient of performance(COP)of the DX GSHP is higher than that of the GSHP.In addition,the system performance of the DX GSHP system is higher than that of the conventional GSHP system because there are no secondary solution loops and water circulating pumps in the DX GSHP system.The experimental energy performance of the DX GSHP system is also investigated based on the actual operational data.The tested DX GSHP system is installed in Xiangtan,China.The U-vertical GHE of the DX GSHP is buried in a water well.The length and the outside nominal diameter of the GHE are 42 m and 12.7 mm,respectively.The experimental results show that the maximum(COP)and the average COP of the DX GSHP system in the heating mode are 5.95 and 4.72,respectively.
基金Projects(51804163,52004130)supported by the National Natural Science Foundation of ChinaProject(2018 M 642678)supported by the China Postdoctoral Science Foundation。
文摘This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.
基金Projects(50674107, 10472134, 50490274) supported by the National Natural Science Foundation of China
文摘In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.
基金Projects(60903044,61170049) supported by National Natural Science Foundation of China
文摘Too high energy consumption is widely recognized to be a critical problem in large-scale parallel computing systems.The LogP-based energy-saving model and the frequency scaling method were proposed to reduce energy consumption analytically and systematically for other two representative barrier algorithms:tournament barrier and central counter barrier.Furthermore,energy optimization methods of these two barrier algorithms were implemented on parallel computing platform.The experimental results validate the effectiveness of the energy optimization methods.67.12% and 70.95% energy savings are obtained respectively for tournament barrier and central counter barrier on platforms with 2048 processes with 1.55%?8.80% performance loss.Furthermore,LogP-based energy-saving analytical model for these two barrier algorithms is highly accurate as the predicted energy savings are within 9.67% of the results obtained by simulation.
文摘The research background is based on great consumption of urban rail transit energy, through summarizing the research of scholars at home and abroad, the comprehensive research including train operation pattern, the train traction characteristics and optimization design of integrated research has carried out in this paper, by using OPENTRACK software simulation to verify the optimization results according to different line features finally. The aim of this paper is to explore ways and methods of traction strategy optimization under the condition of trains timing energy saving. The main research contents of this paper are based on the research status at home and abroad, first of all, the different operating modes of the train running on the line are analysed, including the time saving mode, the energy saving mode and timing energy saving mode, and quantitative analysed the influence of different operation modes on vehicle energy consumption. The influence factors and traction calculation method of energy consumption of train running are studied. Firstly, the factors that affect the energy consumption of the train are analysed, including the basic facilities and transport organization mode. On the basis of this, the train load and running status of the train are analysed, and the model of the train movement and energy consumption are calculated. The OPENTRACK software is used to establish the actual circuit model, and the simulation is verified. The results show that the reasonable operation mode of the train operation mode can greatly reduce the energy consumption.
基金Qingdao Entrepreneurship and Innovation Leading Researchers Program(No.19-3-2-40-zhc)Key Research and Development Program of Shandong Province(Nos.2019GHY112072,2019GHY112051)Project Supported by State Key Laboratory of Precision Measuring Technology and Instruments(No.pilab1906).
文摘Aiming at the contradiction between the depth control accuracy and the energy consumption of the self-sustaining intelligent buoy,a low energy consumption depth control method based on historical array for real-time geostrophic oceanography(Argo)data is proposed.As known from the buoy kinematic model,the volume of the external oil sac only depends on the density and temperature of seawater at hovering depth.Hence,we use historical Argo data to extract the fitting curves of density and temperature,and obtain the relationship between the hovering depth and the volume of the external oil sac.Genetic algorithm is used to carry out the optimal energy consumption motion planning for the depth control process,and the specific motion strategy of depth control process is obtained.Compared with dual closed-loop fuzzy PID control method and radial basis function(RBF)-PID method,the proposed method reduces energy consumption to 1/50 with the same accuracy.Finally,a hardware-in-the-loop simulation system was used to verify this method.When the error caused by fitting curves is not considered,the average error is 2.62 m,the energy consumption is 3.214×10^(4)J,and the error of energy consumption is only 0.65%.It shows the effectiveness and reliability of the method as well as the advantages of comprehensively considering the accuracy and energy consumption.
基金part of the joint research project ‘wave STEPS’ funded by the German Federal Ministry of Education and Research(BMBF) through the German Coastal Engineering Research council(KFKI,03KIS108 and 03KIS119)
文摘To understand the processes and energy dissipation performance caused by turbulence during the wave run-up over a stepped revetment,hydraulic model tests with steady flow conditions are conducted and correlated with unsteady flow conditions of the wave run-up within a short time frame.Under irregular waves,the run-up reduction over a stepped revetment is dependent on the Iribarren number and decreases for decreasing Iribarren numbers.Velocity gradients are found to be similar in a steady and unsteady flow regime near the pseudo-bottom.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50906042,51036003)
文摘Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in high-efficiency energy utilization and energy conservation.In this paper,the entransy dissipation analysis is conducted for the separated heat pipe system,and the result indicates that minimum thermal resistance principle is applicable to the optimization of the separated heat pipe system.Whether in the applications of waste heat recovery or air conditioning,the smaller the entransy-dissipation-based thermal re-sistance of the separated heat pipe system is,the better the heat transfer performance will be.Based on the minimum thermal resistance principle,the optimal area allocation relationship between evaporator and condenser is deduced,which is numeri-cally verified in the optimation design of separated heat pipe system.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2013-35)Beijing Municipal Commission of Science and Technology(Grant No.Z131100006013005)
文摘Self-powered chaos signal generator is potentially useful in future medical system,such as low cost portable human healthy monitor and treatment without external power source.For both functional and power unit,the power level of electric energy generator and consumption is a key factor for self-powered system.In this paper,we have investigated the power consumption of three typical output modes of a simple chaos circuit.Analytical analysis for power consumption of fixed output mode is obtained for evaluating the power characteristics of chaos signal generator.Numerical calculations are given for predicting the power characteristics of periodical and chaotic output modes.This study is important for not only understanding the power consumption of chaos signal generator,but also guiding new self-powered chaos signal generator design.
文摘In 1996, Department of Engineering and MaterialSciences,National Natural Science Foundation (NSFC), accepted the suggestion made by some experienced members of CAS and published the key support project Green Architecture System and Dwelling Pattern in application guide for NSFC project. The project research group, led by Prof.