The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterpris...The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterprises. However, due to the complexity of the system, it is quite difficult to perform a timely comprehensive analysis of the energy consumption of the whole production system. Aiming to realize an online assessment of the energy consumption of the system, great effort was first made in Jinguan Copper, Tongling Nonferrous Metals Group Co. Ltd. Methods were proposed to solve technical difficulties such as the acquisition and processing of data with different sampling frequencies, the online evaluation of the electricity consumption, and timely evaluation of product output in the periodic process. As a result, a software system was developed to make the online analysis of the energy consumption and efficiency from the three levels ranging from the system to the equipment. The analytical results at the system level was introduce. It’s found that electricity is the most consumed energy in the system, accounting for 77.3% of the total energy consumption. The smelting unit has the highest energy consumption, accounting for 52.8% of the total energy consumed in the whole enterprise.展开更多
In this paper,we discuss in detail the basic issue of green design and consider an energy efficiency function as the metric to evaluate green cellular networks.Specifically,we investigate the transmit power required f...In this paper,we discuss in detail the basic issue of green design and consider an energy efficiency function as the metric to evaluate green cellular networks.Specifically,we investigate the transmit power required for an expected transmission capacity and propose a capacity-power formula based on the energy conservation and the Shannon capacity theorem.Two novel definitions of cell interference depth and handoff dynamic model are introduced and the corresponding expression of energy efficiency function is derived.Numerical results show that the energy efficiency function is closely correlated with the transmitted/received power required and the cell radius.Our work provides a useful basis for research and evaluation on green design and technology of cellular networks.展开更多
Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By...Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By using both new investigations and previous experimental results, this paper demonstrates that (1) kinetic energy carried by moving fragments in rock fracture is notable and it increases with an increasing loading rate;(2) this kinetic energy can be well used in secondary fragmentation in crushing and blasting. Accordingly, part of the muck pile from previous blast should be left in front of new(bench) face in either open pit or underground blasting. If so, when new blast occurs, the fragments from the new blast will collide with the muck pile left from the previous blast, and the kinetic energy carried by the moving fragments will be partly used in their secondary fragmentation.展开更多
Switch policy is essential for small cells to properly serve variable number of users in an energy efficient way.However,frequently switching small cell base stations(SBSs) may increase the network operating cost,espe...Switch policy is essential for small cells to properly serve variable number of users in an energy efficient way.However,frequently switching small cell base stations(SBSs) may increase the network operating cost,especially when there is an nonnegligible start-up energy cost.To this end,by observing the variety of user number,we focus on the design of a switch policy which minimize the cumulative energy consumption.A given user transmission rate is guaranteed and the capability of SBSs are limited as well.According to the knowledge on user number variety,we classify the energy consumption problem into two cases.In complete information case,to minimize the cumulative energy consumption,an offline solution is proposed according to critical segments.A heuristic algorithm for incomplete information case(HAIIC) is proposed by tracking the difference of cumulative energy consumption.The upper bound of the Energy Consumption Ratio(ECR) for HAIIC is derived as well.In addition,a practical Q-learning based probabilistic policy is proposed.Simulation results show that the proposed HAIIC algorithm is able to save energy efficiently.展开更多
Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Conseq...Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.展开更多
With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a v...With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.展开更多
Wireless sensor network(WSN) is a typical kind of low-power and lossy network,in where ARQ(Automatic Repeat reQuest)schemes are often used to improve packets reliability.However,the ARQ related packets may incur signi...Wireless sensor network(WSN) is a typical kind of low-power and lossy network,in where ARQ(Automatic Repeat reQuest)schemes are often used to improve packets reliability.However,the ARQ related packets may incur significant load and consume more energy.This paper proposes a novel energy efficient ARQ protocol called ARQ+,which uses the nearest-first scheme and NAK aggregation scheme to reduce the amount and transmission hops of the ARQ related packets.Consequently,the energy consumption is significantly decreased.Theoretical analyses of ARQ+ on energy consumption,packet arrive ratio and latency are provided.Performance improvement of ARQ+ is validated by extensive simulations.They both show that ARQ+ has satisfactory energy efficiency,good packets arriving ratio and reasonable average packet delay comparing to traditional ARQ schemes.展开更多
In N-policy, the nodes attempt to seize the channel when the number of packets in the buffer approaches N. The performance of N-policy on the energy efficiency is widely studied in the past years. And it is presented ...In N-policy, the nodes attempt to seize the channel when the number of packets in the buffer approaches N. The performance of N-policy on the energy efficiency is widely studied in the past years. And it is presented that there exists one optimal N to minimize the energy consumption. However, it is noticed that the delay raised by N-policy receives little attention. This work mathematically proves the delay to monotonically increase with increasing N in the collision-unfree channel. For planar network where the near-to-sink nodes burden heavier traffic than the external ones, the data stemming from the latter undergo longer delay.The various-N algorithm is proposed to address this phenomenon by decreasing the threshold N of outer nodes. Without the impacting on the network longevity, the maximum delay among the network has decreased 62.9% by the algorithm. Extensive simulations are given to verify the effectiveness and correctness of our analysis.展开更多
In the last years, there has been a big development of European policies and regulations on energy saving topics. This is due to the will to reach the targets of 20-20-20. Buildings consume a lot of energy, so the leg...In the last years, there has been a big development of European policies and regulations on energy saving topics. This is due to the will to reach the targets of 20-20-20. Buildings consume a lot of energy, so the legal framework related to the reduction of energy consumption in this sector has had a huge evolution. The "NZEB (nearly zero energy building)" concept was introduced in 2010, eight years after the release of the original EPBD (energy performance of buildings directive). By 2020, all new buildings and buildings that are subject to renovation should have very low energy consumption, covered for the major part by renewable sources. Designing and realizing this kind of building is a very ambitious task, which needs to be supported by appropriate tools and software. This paper presents a new tool for assessing building performance, named BENIMPACT Suite (building's environmental impact evaluator and optimizer), which is developed by EnginSoft (Italy). The suite is organized in different core modules that allow to verify how the building performance level is influenced by different design choices, such as envelope shape and materials, plant systems, renewable sources use, etc.. One of the test cases used to validate the BENIMPACT Suite energy performance is the evaluation of an interesting Italian ZEB, finished in 2010 and called CasaZeroEnergy. It is located in Felettano (Udine), a small town in northeastern Italy. This building is an experimental house designed and monitored by the Laboratory of Building Design of the University of Trento (Italy) and built by Polo Le Ville Plus Group (Cassacco-ltaly). The energy performance of this building was modelled and evaluated using BENIMPACT Suite, and simulation results were compared with monitored data.展开更多
With the rapid development of green communications,energy consumption issue plays more and more important role in cooperative communication strategies and communication systems.Based on cooperative transmission model,...With the rapid development of green communications,energy consumption issue plays more and more important role in cooperative communication strategies and communication systems.Based on cooperative transmission model,a cooperative user selection scheme is proposed in consideration of both energy efficiency and interference factor.With the proposed scheme,the selected cooperative user consumes less energy and receives less interference.Furthermore,the main factor is analyzed to affect system performance,including signal-to-noise ratio(SNR)of source user and cooperative user,distance between source user and cooperative user or base station(BS),and fading factor in the transmission model.Through the proposed scheme,energy consumption and influence of interference are jointly taken into account during the cooperative user selection process.Besides,bit error rate(BER)in proposed scheme is also superior to existing schemes.Simulation results are presented to show the performance improvement of the proposed scheme.展开更多
基金Project(1301021018) supported by Science and Technology Research Project of Anhui Province,China
文摘The copper flash smelting process is characterized by its involvement of wide energy sources and high energy consumption, so the energy conservation is usually a highly concerned topic for the flash smelting enterprises. However, due to the complexity of the system, it is quite difficult to perform a timely comprehensive analysis of the energy consumption of the whole production system. Aiming to realize an online assessment of the energy consumption of the system, great effort was first made in Jinguan Copper, Tongling Nonferrous Metals Group Co. Ltd. Methods were proposed to solve technical difficulties such as the acquisition and processing of data with different sampling frequencies, the online evaluation of the electricity consumption, and timely evaluation of product output in the periodic process. As a result, a software system was developed to make the online analysis of the energy consumption and efficiency from the three levels ranging from the system to the equipment. The analytical results at the system level was introduce. It’s found that electricity is the most consumed energy in the system, accounting for 77.3% of the total energy consumption. The smelting unit has the highest energy consumption, accounting for 52.8% of the total energy consumed in the whole enterprise.
基金the National Science Foundation of China,the Hi-Tech Research and Development Program of China of Mobile Internet
文摘In this paper,we discuss in detail the basic issue of green design and consider an energy efficiency function as the metric to evaluate green cellular networks.Specifically,we investigate the transmit power required for an expected transmission capacity and propose a capacity-power formula based on the energy conservation and the Shannon capacity theorem.Two novel definitions of cell interference depth and handoff dynamic model are introduced and the corresponding expression of energy efficiency function is derived.Numerical results show that the energy efficiency function is closely correlated with the transmitted/received power required and the cell radius.Our work provides a useful basis for research and evaluation on green design and technology of cellular networks.
文摘Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By using both new investigations and previous experimental results, this paper demonstrates that (1) kinetic energy carried by moving fragments in rock fracture is notable and it increases with an increasing loading rate;(2) this kinetic energy can be well used in secondary fragmentation in crushing and blasting. Accordingly, part of the muck pile from previous blast should be left in front of new(bench) face in either open pit or underground blasting. If so, when new blast occurs, the fragments from the new blast will collide with the muck pile left from the previous blast, and the kinetic energy carried by the moving fragments will be partly used in their secondary fragmentation.
基金partially supported by National Key Project of China under Grants No. 2013ZX03001007-004National Natural Science Foundation of China under Grants No. 61102052,61325012,61271219,91438115 and 61221001
文摘Switch policy is essential for small cells to properly serve variable number of users in an energy efficient way.However,frequently switching small cell base stations(SBSs) may increase the network operating cost,especially when there is an nonnegligible start-up energy cost.To this end,by observing the variety of user number,we focus on the design of a switch policy which minimize the cumulative energy consumption.A given user transmission rate is guaranteed and the capability of SBSs are limited as well.According to the knowledge on user number variety,we classify the energy consumption problem into two cases.In complete information case,to minimize the cumulative energy consumption,an offline solution is proposed according to critical segments.A heuristic algorithm for incomplete information case(HAIIC) is proposed by tracking the difference of cumulative energy consumption.The upper bound of the Energy Consumption Ratio(ECR) for HAIIC is derived as well.In addition,a practical Q-learning based probabilistic policy is proposed.Simulation results show that the proposed HAIIC algorithm is able to save energy efficiently.
基金supported under the National Basic Research Program(973) of China(Project Number: 2012CB315801)the National Natural Science Fund(Project Number:61300184)the fundamental research funds for the Central Universities(Project Number:2013RC0113)
文摘Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.
基金supported by NSFC under grant No. 61322111 and No. 61401249the National Basic Research Program of China (973 Program) No. 2013CB336600+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No. 20130002120001Chuanxin Funding, and Beijing nova program No.Z121101002512051
文摘With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.
基金partly supported by the National Key Technology Research and Development Program of China under Grant No.2011BAK12B02the National Natural Science Foundation of China under Grant No.61104042+2 种基金the National S&T Major Project of China under Grant No.2010ZX03005-003the Program for New Century Excellent Talents in University(NCET-10-0294),Chinathe National Natural Science Foundation of China under Grant No.60832007
文摘Wireless sensor network(WSN) is a typical kind of low-power and lossy network,in where ARQ(Automatic Repeat reQuest)schemes are often used to improve packets reliability.However,the ARQ related packets may incur significant load and consume more energy.This paper proposes a novel energy efficient ARQ protocol called ARQ+,which uses the nearest-first scheme and NAK aggregation scheme to reduce the amount and transmission hops of the ARQ related packets.Consequently,the energy consumption is significantly decreased.Theoretical analyses of ARQ+ on energy consumption,packet arrive ratio and latency are provided.Performance improvement of ARQ+ is validated by extensive simulations.They both show that ARQ+ has satisfactory energy efficiency,good packets arriving ratio and reasonable average packet delay comparing to traditional ARQ schemes.
基金Projects(61379110,61379057,61073186)supported by the National Natural Science Foundation of ChinaProject(2013zzts043)supported by the Fundamental Research Funds for the Central Universities,China
文摘In N-policy, the nodes attempt to seize the channel when the number of packets in the buffer approaches N. The performance of N-policy on the energy efficiency is widely studied in the past years. And it is presented that there exists one optimal N to minimize the energy consumption. However, it is noticed that the delay raised by N-policy receives little attention. This work mathematically proves the delay to monotonically increase with increasing N in the collision-unfree channel. For planar network where the near-to-sink nodes burden heavier traffic than the external ones, the data stemming from the latter undergo longer delay.The various-N algorithm is proposed to address this phenomenon by decreasing the threshold N of outer nodes. Without the impacting on the network longevity, the maximum delay among the network has decreased 62.9% by the algorithm. Extensive simulations are given to verify the effectiveness and correctness of our analysis.
文摘In the last years, there has been a big development of European policies and regulations on energy saving topics. This is due to the will to reach the targets of 20-20-20. Buildings consume a lot of energy, so the legal framework related to the reduction of energy consumption in this sector has had a huge evolution. The "NZEB (nearly zero energy building)" concept was introduced in 2010, eight years after the release of the original EPBD (energy performance of buildings directive). By 2020, all new buildings and buildings that are subject to renovation should have very low energy consumption, covered for the major part by renewable sources. Designing and realizing this kind of building is a very ambitious task, which needs to be supported by appropriate tools and software. This paper presents a new tool for assessing building performance, named BENIMPACT Suite (building's environmental impact evaluator and optimizer), which is developed by EnginSoft (Italy). The suite is organized in different core modules that allow to verify how the building performance level is influenced by different design choices, such as envelope shape and materials, plant systems, renewable sources use, etc.. One of the test cases used to validate the BENIMPACT Suite energy performance is the evaluation of an interesting Italian ZEB, finished in 2010 and called CasaZeroEnergy. It is located in Felettano (Udine), a small town in northeastern Italy. This building is an experimental house designed and monitored by the Laboratory of Building Design of the University of Trento (Italy) and built by Polo Le Ville Plus Group (Cassacco-ltaly). The energy performance of this building was modelled and evaluated using BENIMPACT Suite, and simulation results were compared with monitored data.
基金Supported by the National Natural Science Foundation of China(No.61372089,61571021)Beijing Natural Science Foundation(No.4132019)
文摘With the rapid development of green communications,energy consumption issue plays more and more important role in cooperative communication strategies and communication systems.Based on cooperative transmission model,a cooperative user selection scheme is proposed in consideration of both energy efficiency and interference factor.With the proposed scheme,the selected cooperative user consumes less energy and receives less interference.Furthermore,the main factor is analyzed to affect system performance,including signal-to-noise ratio(SNR)of source user and cooperative user,distance between source user and cooperative user or base station(BS),and fading factor in the transmission model.Through the proposed scheme,energy consumption and influence of interference are jointly taken into account during the cooperative user selection process.Besides,bit error rate(BER)in proposed scheme is also superior to existing schemes.Simulation results are presented to show the performance improvement of the proposed scheme.