An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If th...An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.展开更多
This paper outlines a concurrent engineering environment that supports interaction between members of a geographically dispersed multidisciplinary team who is engaged in engineering design activities. Some ideas of en...This paper outlines a concurrent engineering environment that supports interaction between members of a geographically dispersed multidisciplinary team who is engaged in engineering design activities. Some ideas of engineering design, especially conceptual design are reviewed. A deeper scientific analysis of intelligent design is discussed. A new problem solving strategy and methodologies to implement cooperative design are proposed. Finally, a conceptual model of a blackboard system for accomplishing conceptual design automation is presented. Its fundamental principles, system organization and key implementation techniques are investigated in detail.展开更多
This work aims at finding pedestrian walking characteristics at U-type stairs according to the width change of stairs and appropriate spot for installing piezoelectric energy harvesting.The number of pedestrian at two...This work aims at finding pedestrian walking characteristics at U-type stairs according to the width change of stairs and appropriate spot for installing piezoelectric energy harvesting.The number of pedestrian at two kinds of stairs(one is stairs with 1.5 m in width and the other is stairs with 3 m in width) was estimated by calculating the number of steps on the stairs by a zone which is divided into 30 cm×30 cm.The result shows high density in the middle in the case of narrow stairs but traffic is concentrated on stair inside(pillar side) in stairs with large width.In conclusion,the location for installation of piezoelectric energy harvesting system should be considered differently on stairs width and the number of installation depends on total expected traffic and the expected traffic for a device.展开更多
In the present article it will be critically questioned the traditional entrepreneurship education approaches based on a narrow conception of competency, and their values. Assuming the perspective that to be an entrep...In the present article it will be critically questioned the traditional entrepreneurship education approaches based on a narrow conception of competency, and their values. Assuming the perspective that to be an entrepreneur is basically an attitude towards life and the world, there proposed holistic, constructivist and experiential processes and strategies for entrepreneurship education. The "entrepreneur XXI", must be able to undertake a social function of change, so, an economical and social development more human, ethical and intelligent. Under this assumption, the "Tree Model for the Development of Entrepreneurial Competencies", that will be discussed globally in the second part of this article, suggests a dynamic and experiential approach ofentrepreneurship education based on the qualification of people's behaviour, self-esteem, competencies and experiences; a profile of key behavioural and performance competencies (root), experimental pedagogical procedures (trunk) and real results within group projects (fruits). This model has been developed during the last decade (2001-2011), using a multidisciplinary research-action procedure, within business, education (at different teaching levels) and social project environments.展开更多
With the development of artificial intelligence, communication, computer and other related technologies, it becomes feasible to rebuild traditional railway with such advanced technologies in order to establish a new g...With the development of artificial intelligence, communication, computer and other related technologies, it becomes feasible to rebuild traditional railway with such advanced technologies in order to establish a new generation railway transport system. The railway intelligent transportation system is the trend of railway transportation system in China, and it is also the research focus of international railway transport industry. This paper presents the definition, characters, architecture, key technologies and developing pattern of the RITS(railway intelligent transportation system). Then three typical applications are introduced. Finally, the prospect of the RITS is summarized.展开更多
Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predomin...Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.展开更多
In recent years, managers' self-interest motivation has been attracting more and more attention from both the academia and practice.Therefore, the ways and depth of managers' self-interest motivation influencing lis...In recent years, managers' self-interest motivation has been attracting more and more attention from both the academia and practice.Therefore, the ways and depth of managers' self-interest motivation influencing listed companies' operating performance has become a hot research area with important theoretical and practical significance. Based on the samples of A-share companies listed in Shanghai and Shenzhen stock exchange during 2012-2014. we studied different effects of managers' self-interest motivation on listed company's business performance under different situations.The innovation of this paper mainly lies in the following two points: on the one hand, we did not adopt the previous research methods which does not distinguish different kinds of company's business performance. Therefore, we divided business performance into two types firstly, then we made empirical text of the influences of managers' self-interest motivation on business performance by virtue of Hausman Model and drew related conclusions under different situations of operating performance. On the other hand, the index measuring managers' self-interest is relatively new.展开更多
A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF plan...A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF planar platform was established based on slippery course and bearing, and dSPACE real-time control system was used to perform the platform's motion control experiment on robot. Based on the kinematic equation and mechanical balance equation of moving platform, the stiffness of the robot system was analyzed and the calibration scheme of the system considering wire tension was put forward. Position servo control experiments were carried out, position servo tracking precision was analyzed, and real-time wire tension was detected. The results show that the moving error of the moving platform tracking is small (the maximum difference is about 3%), and the rotation error is large (the maximum difference is about 12%). The wire tension has wave properties (the wire tension fluctuation is about 10 N).展开更多
The aim of the study was to investigate the correlation of zinc-finger protein 217 (ZNF217) gone ex- pression with the biological behavior of human ovarian cancer HO-8910 cells. Methods: The expression of ZNF217 in...The aim of the study was to investigate the correlation of zinc-finger protein 217 (ZNF217) gone ex- pression with the biological behavior of human ovarian cancer HO-8910 cells. Methods: The expression of ZNF217 in ovarian carcinoma cell line:s was detected by RT-PCR and Western blot, respectively. The biological behaviors of the transfectants were investigated by MTT, in vitro Boyden chamber and in vivo invasion assay, respectively. Results: RT-PCR and Western blotting revealed that transfection of ZNF217 into the HO-8910 cells significantly increased their proliferation along with mark- edly enhanced in vitro and in vivo invasion and metastatic abilities. MTT assay showed that the proliferation ability of pEGFP- N1-ZNF217/HO-8910 cells was significantly higher than that of pEGFP-N1/HO-8910 cells and HO-8910 cells (P 〈 0.001). The Boyden chamber assay showed that the numbers of migrating pEGFP-N1-ZNF217/HO-8910, pEGFP-N1/HO-8910 and HO-8910 cells were (141.25 ± 13.91) cells/200 x field, (82.50 ± 11.73) cells/200 × field and (81.75 ± 12.12) cells/200 x field, respectively, with a significant difference between them (F = 29.274, P 〈 0.001). The nude mouse experiment showed that the in vivo tumor formation ability of pEGFP-N1-ZNF217/HO-8910 cells was significantly higher than that of pEGFP-N1/HO-8910 cells (P 〈 0.001). Conclusion: Based on these clinical and laboratory observations, we conclude that ZNF217 may contribute to ovarian cancer invasion and metastasis, and associated with worse clinical outcomes. We evaluated ZNF217's role as a biomarker of ovarian carcinogenesis and tumor progression in patient samples and explored possible molecular mechanisms in promoting tumor growth and invasion.展开更多
Determination of the capacity for explosion of gas mixtures in a sealed area is very important for mining engineers.If this capacity is high,it would be very dangerous for rescue workers to proceed with their rescue o...Determination of the capacity for explosion of gas mixtures in a sealed area is very important for mining engineers.If this capacity is high,it would be very dangerous for rescue workers to proceed with their rescue operations.A number of methods have been developed to determine the capacity for explosion of gas mixtures in sealed areas.One of the more popular methods is the Coward explosive triangle,published by Coward.He presented a fast and easy way to determine the capacity for explosion of gas mixtures,which has proved to be a very useful tool for mining engineers and members of rescue teams.However,due to few drawbacks in this method;potential errors would be introduced when it is applied.In a brief introduction we first describe the Coward method and then,we propose and discuss new calibrated explosive triangles.We demonstrate the method in two case studies where we compare our results with those of the old model.The results indicate that the calibrated method have improved accuracy and reliability.Therefore,assessments can be made more accurately.展开更多
The wisdom of the aged has become a direction that can't be ignored in the development of the old-age industry. It can be combined with traditional home care, institutional pension and community pension, and can impr...The wisdom of the aged has become a direction that can't be ignored in the development of the old-age industry. It can be combined with traditional home care, institutional pension and community pension, and can improve the efficiency of these old-age models, and can also connect the transformation of old-age service and medical service to the combination of medical support, and there are many advantages. This article will analyze the realization basis of intelligent endowment, the advantages and disadvantages of intelligent endowment, and explore how to effectively promote the development of intelligent pension industry.展开更多
Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used ...Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used to forecast the mining cost of working faces, which shows the model’s potential prospect of applications.展开更多
With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ab...With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ability of the robot to complete the task is also valued and widely used.In this paper, the whole covered area of the local path planning uses a fuzzy control algorithm,which uses the robustness and an action of perception based on the biological behavior of the fuzzy control algorithm combined with itself.For obstacle avoidance system of mobile robots,we put forward the avoidance strategy of fully contacting the obstacles.And we have conducted a deep study about the theory and implementation methods.展开更多
The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelli...The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelligent space systems that combine robotic intelligence(robint),virtual intelligence(virtint),and human intelligence(humint) synergetically.This article extends the architecture of the three-layer intelligence stemming from successful Mars rovers and related technologies in order to support the R&D of future tele-operated robotic systems.Double-layer human-machine interfaces are suggested to support the integration of humint from scientists and engineers through supervisory(Mars rovers) or three-dimensional(3D) predictive direct tele-operation(lunar rovers).The concept of multilevel autonomy to realize robint,in particular,the Coupled-Layer Architecture for Robotic Autonomy developed for Mars rovers,is introduced.The challenging issues of intelligent perception(proprioception and exteroception),navigation,and motion control of rovers are discussed,where the terrains' mechanical properties and wheel-terrain interaction mechanics are considered to be key.Double-level virtual simulation architecture to realize virtint is proposed.Key technologies of virtint are summarized:virtual planetary terrain modeling,virtual intelligent rover,and wheel-terrain interaction mechanics.This generalized three-layer intelligence framework is also applicable to other systems that require human intervention,such as space robotic arms,robonauts,unmanned deep-sea vehicles,and rescue robots,particularly when there is considerable time delay.展开更多
Although the famous brittle characteristics of molecular crystals are unfavorable when they are used as flexible smart materials(FSMs),an increasing number of organic crystal-based FSMs have been reported recently.Thi...Although the famous brittle characteristics of molecular crystals are unfavorable when they are used as flexible smart materials(FSMs),an increasing number of organic crystal-based FSMs have been reported recently.This breaks the perception of their stiff and brittle properties and promises a bright future for basic research and practical applications.Crystalline smart materials present considerable advantages over polymer materials under certain circumstances,rendering them potential candidates for certain applications,such as rapidly responsive actuators,ON/OFF switching,and microrobots.In this review,we summarize the recent developments in the field of organic crystal-based FSMs,including the derivatives of azobenzene,diarylethene,anthracene,and olefin.These organic crystal-based FSMs can bend,curl,twist,deform,or respond otherwise to external stimuli,such as heat or light.The detailed mechanisms of their smart behaviors are discussed with their potential applications in exciting intelligent fields.We believe this review could provide guidelines toward future fabrication and developments for novel organic crystal-based FSMs and their advanced smart applications.展开更多
Physiological and functional traits, especially those related to behavior and whole-organism performance capacities, are subject to a variety of both parallel and opposing natural and sexual selection pressures. These...Physiological and functional traits, especially those related to behavior and whole-organism performance capacities, are subject to a variety of both parallel and opposing natural and sexual selection pressures. These selection pressures show considerable interspeciflc variation, shaping contemporary behavioral and functional diversity, but the form and intensity of selection on physiological and functional traits can also vary intraspecifically. The same suites of traits can experience quite different se- lection pressures, depending on the sex or age of a given individual, as well as the presence and nature of alternative reproductive strategies and tactics. These inter- and intra-locus genetic conflicts have potentially important consequences for the evolutionary trajectories of traits subject to them. Consequently, any intraspecific conflicts which could displace traits from their selective op- tima in certain classes of individuals relative to others are expected to result in selection for mechanisms to compensate for devia- tion from those optima. Such conflicts include interlocus sexual conflict, intralocus sexual conflict, and interacting phenotypes, as well as conflict within a sex. In this paper, we consider the evidence for, and implications of, such conflicts for physiological and functional traits in diverse taxa, including both vertebrates and invertebrates, and evaluate the various mechanisms, ranging from behavioral and mechanical to energetic and genetic, enabling compensation. We also discuss how pre- and post-mating conflicts, as well as interacting phenotypes, might affect the evolution of behavior and physiological and functional traits. Investigators that seek to understand the links among behavior, morphology, physiology, and function should consider such conflicts.展开更多
The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degre...The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degrees of freedom robotic bat wing was developed to emulate the movements of bat wing. The design, fabrication, programing and wind tunnel experiments of the robot bat wing are described in this paper. Based on this robotic wing, the influence of flap amplitude, wind speed, flight frequency, downstroke ratio and stroke plane angle as well as the contributions of flap, elbow, sweep and wrist motions on the aerodynamic force and mechanical power were studied and analyzed. Results of wind tunnel experiments validated that higher lift would bring greater power consumption, and the flap motion would generate the most force and need more energy expenditure compared with other motions of bat. The experimental results suggest that the flap and fold motions are indispensable to make a robotic bat wing that has a better flight performance. This study provides some implications and a better understanding for the future robotic bat.展开更多
基金The National Natural Science Foundation of China(No.61375076)the Research&Innovation Program for Graduate Student in Universities of Jiangsu Province(No.KYLX_0108)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1423)Jiangsu Planned Projects for Postdoctoral Research Funds(No.1302064B)
文摘An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.
文摘This paper outlines a concurrent engineering environment that supports interaction between members of a geographically dispersed multidisciplinary team who is engaged in engineering design activities. Some ideas of engineering design, especially conceptual design are reviewed. A deeper scientific analysis of intelligent design is discussed. A new problem solving strategy and methodologies to implement cooperative design are proposed. Finally, a conceptual model of a blackboard system for accomplishing conceptual design automation is presented. Its fundamental principles, system organization and key implementation techniques are investigated in detail.
基金Project(NRF-2011-0000868)supported by the National Research Foundation of Korea(NRF)funded by the Korea government(MEST)Project(2011-0003968)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)
文摘This work aims at finding pedestrian walking characteristics at U-type stairs according to the width change of stairs and appropriate spot for installing piezoelectric energy harvesting.The number of pedestrian at two kinds of stairs(one is stairs with 1.5 m in width and the other is stairs with 3 m in width) was estimated by calculating the number of steps on the stairs by a zone which is divided into 30 cm×30 cm.The result shows high density in the middle in the case of narrow stairs but traffic is concentrated on stair inside(pillar side) in stairs with large width.In conclusion,the location for installation of piezoelectric energy harvesting system should be considered differently on stairs width and the number of installation depends on total expected traffic and the expected traffic for a device.
文摘In the present article it will be critically questioned the traditional entrepreneurship education approaches based on a narrow conception of competency, and their values. Assuming the perspective that to be an entrepreneur is basically an attitude towards life and the world, there proposed holistic, constructivist and experiential processes and strategies for entrepreneurship education. The "entrepreneur XXI", must be able to undertake a social function of change, so, an economical and social development more human, ethical and intelligent. Under this assumption, the "Tree Model for the Development of Entrepreneurial Competencies", that will be discussed globally in the second part of this article, suggests a dynamic and experiential approach ofentrepreneurship education based on the qualification of people's behaviour, self-esteem, competencies and experiences; a profile of key behavioural and performance competencies (root), experimental pedagogical procedures (trunk) and real results within group projects (fruits). This model has been developed during the last decade (2001-2011), using a multidisciplinary research-action procedure, within business, education (at different teaching levels) and social project environments.
基金funded by the National Natural Science Foundation of China ( No. 61074151) Nation Science and Technology Support Program ( No. T1DB300020 and No. T1DB200010)Ministry of Railways Science and Technology Research Program ( No. 2006X023 and No. 2010X008)
文摘With the development of artificial intelligence, communication, computer and other related technologies, it becomes feasible to rebuild traditional railway with such advanced technologies in order to establish a new generation railway transport system. The railway intelligent transportation system is the trend of railway transportation system in China, and it is also the research focus of international railway transport industry. This paper presents the definition, characters, architecture, key technologies and developing pattern of the RITS(railway intelligent transportation system). Then three typical applications are introduced. Finally, the prospect of the RITS is summarized.
文摘Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.
文摘In recent years, managers' self-interest motivation has been attracting more and more attention from both the academia and practice.Therefore, the ways and depth of managers' self-interest motivation influencing listed companies' operating performance has become a hot research area with important theoretical and practical significance. Based on the samples of A-share companies listed in Shanghai and Shenzhen stock exchange during 2012-2014. we studied different effects of managers' self-interest motivation on listed company's business performance under different situations.The innovation of this paper mainly lies in the following two points: on the one hand, we did not adopt the previous research methods which does not distinguish different kinds of company's business performance. Therefore, we divided business performance into two types firstly, then we made empirical text of the influences of managers' self-interest motivation on business performance by virtue of Hausman Model and drew related conclusions under different situations of operating performance. On the other hand, the index measuring managers' self-interest is relatively new.
基金Project(20102304120007) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(QC2010009)supported by the Natural Science Foundation of Heilongjiang Province, China+1 种基金Projects(20110491030, LBH-Z10219) supported by China Postdoctoral Science FoundationProject(HEUCF120706) supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-DOF (degree of freedom) planar robot completely restrained and positioned parallel pulled by four wires was studied. The wire driving properties were analyzed through experiments. The restrained three-DOF planar platform was established based on slippery course and bearing, and dSPACE real-time control system was used to perform the platform's motion control experiment on robot. Based on the kinematic equation and mechanical balance equation of moving platform, the stiffness of the robot system was analyzed and the calibration scheme of the system considering wire tension was put forward. Position servo control experiments were carried out, position servo tracking precision was analyzed, and real-time wire tension was detected. The results show that the moving error of the moving platform tracking is small (the maximum difference is about 3%), and the rotation error is large (the maximum difference is about 12%). The wire tension has wave properties (the wire tension fluctuation is about 10 N).
基金Supported by grants from Medical Science and Technology Research Fund of Guangdong Province(No.WSTJJ20111110440104197405153780)the Dean Fund of Nanfang Hospital,Southern Medical University(No.2012B015)
文摘The aim of the study was to investigate the correlation of zinc-finger protein 217 (ZNF217) gone ex- pression with the biological behavior of human ovarian cancer HO-8910 cells. Methods: The expression of ZNF217 in ovarian carcinoma cell line:s was detected by RT-PCR and Western blot, respectively. The biological behaviors of the transfectants were investigated by MTT, in vitro Boyden chamber and in vivo invasion assay, respectively. Results: RT-PCR and Western blotting revealed that transfection of ZNF217 into the HO-8910 cells significantly increased their proliferation along with mark- edly enhanced in vitro and in vivo invasion and metastatic abilities. MTT assay showed that the proliferation ability of pEGFP- N1-ZNF217/HO-8910 cells was significantly higher than that of pEGFP-N1/HO-8910 cells and HO-8910 cells (P 〈 0.001). The Boyden chamber assay showed that the numbers of migrating pEGFP-N1-ZNF217/HO-8910, pEGFP-N1/HO-8910 and HO-8910 cells were (141.25 ± 13.91) cells/200 x field, (82.50 ± 11.73) cells/200 × field and (81.75 ± 12.12) cells/200 x field, respectively, with a significant difference between them (F = 29.274, P 〈 0.001). The nude mouse experiment showed that the in vivo tumor formation ability of pEGFP-N1-ZNF217/HO-8910 cells was significantly higher than that of pEGFP-N1/HO-8910 cells (P 〈 0.001). Conclusion: Based on these clinical and laboratory observations, we conclude that ZNF217 may contribute to ovarian cancer invasion and metastasis, and associated with worse clinical outcomes. We evaluated ZNF217's role as a biomarker of ovarian carcinogenesis and tumor progression in patient samples and explored possible molecular mechanisms in promoting tumor growth and invasion.
文摘Determination of the capacity for explosion of gas mixtures in a sealed area is very important for mining engineers.If this capacity is high,it would be very dangerous for rescue workers to proceed with their rescue operations.A number of methods have been developed to determine the capacity for explosion of gas mixtures in sealed areas.One of the more popular methods is the Coward explosive triangle,published by Coward.He presented a fast and easy way to determine the capacity for explosion of gas mixtures,which has proved to be a very useful tool for mining engineers and members of rescue teams.However,due to few drawbacks in this method;potential errors would be introduced when it is applied.In a brief introduction we first describe the Coward method and then,we propose and discuss new calibrated explosive triangles.We demonstrate the method in two case studies where we compare our results with those of the old model.The results indicate that the calibrated method have improved accuracy and reliability.Therefore,assessments can be made more accurately.
文摘The wisdom of the aged has become a direction that can't be ignored in the development of the old-age industry. It can be combined with traditional home care, institutional pension and community pension, and can improve the efficiency of these old-age models, and can also connect the transformation of old-age service and medical service to the combination of medical support, and there are many advantages. This article will analyze the realization basis of intelligent endowment, the advantages and disadvantages of intelligent endowment, and explore how to effectively promote the development of intelligent pension industry.
文摘Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used to forecast the mining cost of working faces, which shows the model’s potential prospect of applications.
文摘With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ability of the robot to complete the task is also valued and widely used.In this paper, the whole covered area of the local path planning uses a fuzzy control algorithm,which uses the robustness and an action of perception based on the biological behavior of the fuzzy control algorithm combined with itself.For obstacle avoidance system of mobile robots,we put forward the avoidance strategy of fully contacting the obstacles.And we have conducted a deep study about the theory and implementation methods.
基金supported by the National Natural Science Foundation of China(Grant No.61370033)National Basic Research Program of China(Grant No.2013CB035502)+4 种基金Foundation of Chinese State Key Laboratory of Robotics and Systems(Grant Nos.SKLRS201401A01,SKLRS-2014-MS-06)the Fundamental Research Funds for the Central Universities(Grant No.HIT.BRETIII.201411)Harbin Talent Programme for Distinguished Young Scholars(No.2014RFYXJ001)Postdoctoral Youth Talent Foundation of Heilongjiang Province,China(Grant No.LBH-TZ0403)the"111 Project"(Grant No.B07018)
文摘The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelligent space systems that combine robotic intelligence(robint),virtual intelligence(virtint),and human intelligence(humint) synergetically.This article extends the architecture of the three-layer intelligence stemming from successful Mars rovers and related technologies in order to support the R&D of future tele-operated robotic systems.Double-layer human-machine interfaces are suggested to support the integration of humint from scientists and engineers through supervisory(Mars rovers) or three-dimensional(3D) predictive direct tele-operation(lunar rovers).The concept of multilevel autonomy to realize robint,in particular,the Coupled-Layer Architecture for Robotic Autonomy developed for Mars rovers,is introduced.The challenging issues of intelligent perception(proprioception and exteroception),navigation,and motion control of rovers are discussed,where the terrains' mechanical properties and wheel-terrain interaction mechanics are considered to be key.Double-level virtual simulation architecture to realize virtint is proposed.Key technologies of virtint are summarized:virtual planetary terrain modeling,virtual intelligent rover,and wheel-terrain interaction mechanics.This generalized three-layer intelligence framework is also applicable to other systems that require human intervention,such as space robotic arms,robonauts,unmanned deep-sea vehicles,and rescue robots,particularly when there is considerable time delay.
基金the AME Programmatic Funding Scheme of Cyber Physiochemical Interfaces(CPI)project(#A18Alb0045)Singapore National Research Foundation Fellowship(NRF-NRFF11-2019-0004)the start-up funds of the Youth Talent Support Program from Xi’an Jiaotong University。
文摘Although the famous brittle characteristics of molecular crystals are unfavorable when they are used as flexible smart materials(FSMs),an increasing number of organic crystal-based FSMs have been reported recently.This breaks the perception of their stiff and brittle properties and promises a bright future for basic research and practical applications.Crystalline smart materials present considerable advantages over polymer materials under certain circumstances,rendering them potential candidates for certain applications,such as rapidly responsive actuators,ON/OFF switching,and microrobots.In this review,we summarize the recent developments in the field of organic crystal-based FSMs,including the derivatives of azobenzene,diarylethene,anthracene,and olefin.These organic crystal-based FSMs can bend,curl,twist,deform,or respond otherwise to external stimuli,such as heat or light.The detailed mechanisms of their smart behaviors are discussed with their potential applications in exciting intelligent fields.We believe this review could provide guidelines toward future fabrication and developments for novel organic crystal-based FSMs and their advanced smart applications.
文摘Physiological and functional traits, especially those related to behavior and whole-organism performance capacities, are subject to a variety of both parallel and opposing natural and sexual selection pressures. These selection pressures show considerable interspeciflc variation, shaping contemporary behavioral and functional diversity, but the form and intensity of selection on physiological and functional traits can also vary intraspecifically. The same suites of traits can experience quite different se- lection pressures, depending on the sex or age of a given individual, as well as the presence and nature of alternative reproductive strategies and tactics. These inter- and intra-locus genetic conflicts have potentially important consequences for the evolutionary trajectories of traits subject to them. Consequently, any intraspecific conflicts which could displace traits from their selective op- tima in certain classes of individuals relative to others are expected to result in selection for mechanisms to compensate for devia- tion from those optima. Such conflicts include interlocus sexual conflict, intralocus sexual conflict, and interacting phenotypes, as well as conflict within a sex. In this paper, we consider the evidence for, and implications of, such conflicts for physiological and functional traits in diverse taxa, including both vertebrates and invertebrates, and evaluate the various mechanisms, ranging from behavioral and mechanical to energetic and genetic, enabling compensation. We also discuss how pre- and post-mating conflicts, as well as interacting phenotypes, might affect the evolution of behavior and physiological and functional traits. Investigators that seek to understand the links among behavior, morphology, physiology, and function should consider such conflicts.
基金supported by the Joint Training Doctoral Project of China Scholarship CouncilFunds for the Central Universities (Grant No. 3202003905)Scientific Innovation research of College Graduates in Jiangsu Province (Grant No. CXLX12_0080)
文摘The current work is oriented toward the development of a novel biologically inspired bat aerial robot with morphing wings. Based on the flight characteristics data of natural bats(Eptesicus fuscus), a novel four degrees of freedom robotic bat wing was developed to emulate the movements of bat wing. The design, fabrication, programing and wind tunnel experiments of the robot bat wing are described in this paper. Based on this robotic wing, the influence of flap amplitude, wind speed, flight frequency, downstroke ratio and stroke plane angle as well as the contributions of flap, elbow, sweep and wrist motions on the aerodynamic force and mechanical power were studied and analyzed. Results of wind tunnel experiments validated that higher lift would bring greater power consumption, and the flap motion would generate the most force and need more energy expenditure compared with other motions of bat. The experimental results suggest that the flap and fold motions are indispensable to make a robotic bat wing that has a better flight performance. This study provides some implications and a better understanding for the future robotic bat.