文摘利用2017—2021年的ERA5再分析资料和京津冀国家站地面资料,结合多种机器学习方法建立预报模型,开展轻雾、大雾客观预报。探讨了再分析资料、地形因素的影响,并结合多模型集成、统计消空进一步优化模型。结果表明:(1)XGBoost(eXtreme Gradient Boosting)、LightGBM(Light Gradient Boosting Machine)、随机森林等集成学习方法的预报效果均优于决策树方法;(2)在引入ERA5再分析资料、地形建模后,XGBoost、LightGBM模型的预报性能显著提高。相比仅使用地面要素建模,大雾预报的TS(Threat Score)提升了30%、32%,达到0.52、0.49,命中率分别为0.62、0.87。此外,经过多模型集成后,轻雾、大雾预报的TS提升到了0.51、0.54;(3)2022年秋季一次大雾过程中,本方法提前72 h准确预报了京津冀地区的大雾,其中以LightGBM模型表现最好。0~72 h轻雾预报和0~36 h逐小时大雾预报的TS均达到0.3,预报准确率、时效性均优于ECMWF(European Center for Medium Weather Forecasting)模式。