[Objective] To study the correlation between the biomechanical properties of rape stalks and rape stem lodging. [Method] Through axial compression tests to the stalks of 4 different rape varieties, the change rules of...[Objective] To study the correlation between the biomechanical properties of rape stalks and rape stem lodging. [Method] Through axial compression tests to the stalks of 4 different rape varieties, the change rules of maximum stem bearing ca- pacity, maximum compressive strength, elastic modulus and moment of inertia along plant height were analyzed, as well as the effect of different varieties and water contents on the biomechanical property indices of rape stalks. [Result] The maximum loads of rape stalks presented liner decrease trend along with the increase of stem height, and all reached the maximums below the height of 50 cm. The maximum stem compressive strength and elastic modulus of the 4 varieties were increased with ascending height, but in a slow rate with small change, thus the modulus of e- lasticity could be considered as unchanged. The maximum bearing capacity, maxi- mum compressive strength and elastic modulus of dry rape stalks were higher than wet stalks, indicating that the water contents of rape stalks had significant effect on their mechanical properties. According to the actual lodging situations in filed, stalks of variety No. 1 owned the worst biomechanical properties and lodging degree, while the biomechanical properties of No. 6 and F5 were better than No. 1 and No. 9, and they also had stronger lodging-resistance. [Conclusion] The study provides parameters and bases for the design of mechanized production and mechanical deep processing of crops, and can better reveal the physical natures of organisms. The methods used in this study can also be used to screen excellent crop stalks.展开更多
Experimental studies are carried out at a low speed axial compressor with five different rotor/stator gaps. Analysis of the effect of axial spacing of two successive blade rows on the measured mean flow coefficient at...Experimental studies are carried out at a low speed axial compressor with five different rotor/stator gaps. Analysis of the effect of axial spacing of two successive blade rows on the measured mean flow coefficient at stall inception and on the flow range of compressor under multi-cell rotating stall operating conditions proves that the stator can suppress the flow disturbance in the compressor and strengthen the stability of the compressor. Experimental data show that the stall flow coefficient decreases by reducing the axial spacing of successive blade rows. Moreover, by reducing the axial spacing, the stall pattern transition pace from multi-cell stall to single-cell stall can be shifted. And the compressor directly slips into single-cell stall at 21.0% CR axial spacing. By analyzing the pressure fluctuation closed to the surge line, it can be known that there exists an eigenfrequency where the amplitude of the oscillating pressure suddenly and dramatically increases as the compressor runs close to the surge line and this pressure disturbance is relevant to the compressor instability.展开更多
By means of the relationship between speed and distance headway, this paperattempts to directly determine the road capacity based on a new concept. At first it makes acomprehensive analysis of distance headway, includ...By means of the relationship between speed and distance headway, this paperattempts to directly determine the road capacity based on a new concept. At first it makes acomprehensive analysis of distance headway, including safe distance headway and desired one. Theformer is decided by the demand for the degree of safety, and the latter depends on the motorists'behavior, i.e. the model of traffic flow. Both of them are functions of speed. According to thecharacteristics of their curves, we can find a crossing point that is the capacity of a roadsegment. This capacity represents the maximum flow rate meeting the minimum safety requirement.展开更多
To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and buil...To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.展开更多
Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties an...Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.展开更多
The as-cast Mg-8Li-3Al-0.5Mn-xSr(LAM830-xSr, x=0-1.0) alloys were designed and prepared in a vacuum induction furnace under controlled argon atmosphere. The alloys were then processed by hot extrusion, and their mic...The as-cast Mg-8Li-3Al-0.5Mn-xSr(LAM830-xSr, x=0-1.0) alloys were designed and prepared in a vacuum induction furnace under controlled argon atmosphere. The alloys were then processed by hot extrusion, and their microstructural evolution and mechanical properties were analyzed. Results indicate that the LAM830 alloy mainly consists of α-Mg, β-Li, Al2Mn3, and LiMgAl2 phases. Sr addition results in the precipitation of Al-Sr. Moreover, Sr addition results in a fact that the secondary dendrite arm spacing(DAS) of the primary α-Mg phase is obvious refined. Microstructure of the investigated alloys is further refined as a result of the hot extrusion treatment. The content and morphology of the secondary phases have important effects on the mechanical properties of the alloys. The as-extruded LAM830-0.5Sr alloy exhibits an optimal elongation of 22.43% and as-extruded LAM830-0.75 Sr alloy shows an optimal tensile strength of 265.46 MPa.展开更多
Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors ...Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors that determine their performance,which makes reliable and effective detection methods of internal defects essential. Nondestructive testing(NDT)methods are the most widely-used way due to their tremendous advantages. Though the theoretical background is found,experimental results could be quite complicated and confusing,especially for composite materials with complex defects characteristics. In this paper,experimental study on internal defects in composite materials based on the time of flight(ToF)are investigated. The Gaussian echo model and the parameter estimation methods are established to build a theoretical model for measurements. Then,the distance amplitude correction(DAC)method is proposed to effectively improve the signal-to-noise ratio(SNR)and to reduce distortion of the signal during measurements. Finally,the ToF is adopted to determine depth of internal defects. Experiment study is conducted to investigate the porosity defects and the anti-impact performance of composite materials,as well as defects in objects with various thicknesses. Experimental results show that the proposed method is quite helpful for obtaining the intuition and deep understanding of internal defects,thus contributing to the determination of product performance and its improvement.展开更多
A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of...A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of FTIJs were investigated using particle image velocimetry(PIV). The instantaneous and mean velocities data at different Reynolds numbers(Re) were analyzed to provide insights into the velocity distributions in FTIJs. The effect of jet spacing on the stagnation points, instantaneous velocity, mean velocity, profiles of the x- and ycomponents of mean velocity, and turbulent kinetic energy(TKE) distributions of FTIJs were investigated at Re = 4100 with a volumetric flow rate ratio of 0.5. The characteristics of the turbulent flows are similar for all jet spacings tested. Two stagnation points are observed, which are independent of jet spacing and are not located in the center of the flow field. However, velocity and TKE distributions are strongly dependent on the jet spacing.Decreasing jet spacing increases the expansion angle and the values of TKE, leading to strong turbulence, improving momentum transfer and mixing efficiency in FTIJs. The present study shows that optimization of the operating parameters is helpful for designing FTIJs.展开更多
Directional solidification of Mg-2.35Gd (mass fraction, %) magnesium alloy was carried out to investigate the effects of the solidification parameters (growth rate v and temperature gradient G) on microstructure a...Directional solidification of Mg-2.35Gd (mass fraction, %) magnesium alloy was carried out to investigate the effects of the solidification parameters (growth rate v and temperature gradient G) on microstructure and room temperature mechanical properties under the controlled solidification conditions. The specimens were solidified under steady state conditions with different temperature gradients (G=20, 25 and 30 K/mm) in a wide range of growth rates (v=10-200 μm/s) by using a Bridgman-type directional solidification furnace with liquid metal cooling (LMC) technology. The cellular microstructures are observed. The cellular spacing 2 decreases with increasing v for constant G or with increasing G for constant v. By using a linear regression analysis the relationships can be expressed as 2=136.216v^-0.2440 (G=30 K/mm) and 2=626.5630G^-0.5625 (v=10 μm/s), which are in a good agreement with Trivedi model. An improved tensile strength and a corresponding decreased elongation are achieved in the directionally solidified experimental alloy with increasing growth rate and tempertaure gradient. Furthermore, the directionally solidified experimental alloy exhibits higher room temperature tensile strength than the non-directionally solidified alloy.展开更多
Cache performance tuning tools are conducive to develop program with good locality and fully use cache to decrease the influence caused by speed gap between processor and memory. This paper introduces the design and i...Cache performance tuning tools are conducive to develop program with good locality and fully use cache to decrease the influence caused by speed gap between processor and memory. This paper introduces the design and implementation of a cache performance tuning tool named CTuning, which employs a source level instrumentation method to gather program data access information, and uses a limited reuse distance model to analyze cache behavior. Experiments on 183.equake improve average performance more than 6% and show that CTuning is proficient not only in locating cache performance bottlenecks to guide manual code transformation, but also in analyzing cache behavior relationship among variables, thus to direct manual data reorganization.展开更多
A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscil...A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscillator phase noise, which is the main error source for microwave ranging systems, can be significantly attenuated. Further, since the range measurements are derived on the same satellite, the dual transponder ranging system does not need a time tagging system to synchronize the two satellites. In view of the lack of oscillator noise analysis on the dual transponder ranging model, a comprehensive analysis of oscillator noise effects on ranging accuracy is provided. First, the dual transponder ranging system is described with emphasis on the detailed analysis of oscillator noise on measurement precision. Then, a high-fidelity numerical simulation approach based on the power spectrum density of an actual ultra-stable oscillator is carried out in both frequency domain and time domain to support the presented theoretical analysis. The simulation results under different conditions are consistent with the proposed concepts, which makes the results reliable. Besides, the results demonstrate that a high level of accuracy can be achieved by using this oscillator noise cancelation-oriented ranging method.展开更多
Non-Line-of-Sight(NLOS)Ultraviolet(UV)communication uses the atmosphere as a propagation medium.As the communication range increases,turbulence becomes a significant atmospheric process that affects the propagation of...Non-Line-of-Sight(NLOS)Ultraviolet(UV)communication uses the atmosphere as a propagation medium.As the communication range increases,turbulence becomes a significant atmospheric process that affects the propagation of optical waves.This paper presents a more accurate NLOS channel model by considering turbulence-induced Scintillation Attenuation(SA).Then,the Bit Error Rate(BER)during turbulence of the NLOS UV communication system with On-Off Keying(OOK)modulation and Maximum Likelihood(ML)detection is analysed and compared with that in free space without turbulence.The BER dependence is also analysed for different factors,including the refractive index structure parameter,transceiver range,pointing angles,transmitted power,and data rate.展开更多
In this research paper, an attempt has been made to come across the effect of distance between double glazing on the efficiency of a solar thermal collector. Experiments were carded out on an active solar energy demon...In this research paper, an attempt has been made to come across the effect of distance between double glazing on the efficiency of a solar thermal collector. Experiments were carded out on an active solar energy demonstration system (ET 200). Commercial glass pane of 3 mm thick having the same dimensions as that of the apparatus was placed above the collector at a distance of 2 cm, 4 cm and 6 cm. Tests were done with and without the added glass. Experiments were performed for double glazing with two positions of the light meter. In one position, it was placed in the middle of the collector surface. While, in the other one, the light meter was placed in the middle of the added glass. To study the effect of double glazing on the performance of the solar collector ET 200, the correct position of the light meter was to place it exactly in the middle of the additional pane under the lamp. Double glazing does not enhance the performance of the solar collector because of the high resistance of the system glass air glass. The efficiency of double glazing solar collector decreases with the increasing the distance of the two separated glasses.展开更多
There is evidence that the shipping industry could achieve energy efficiency gains through the implementation of new technologies, with considerable reductions of fuel costs and emissions to air in the sector. Althoug...There is evidence that the shipping industry could achieve energy efficiency gains through the implementation of new technologies, with considerable reductions of fuel costs and emissions to air in the sector. Although the cost reducing effects of some new technologies are well established, companies appear reluctant to innovate despite the financial and societal benefits, as a result of what is referred to as the energy efficiency gap. The global emission impacts of the shipping industry, most notably of greenhouse gases, sulphur and nitrogen oxides are increasingly attracting the attention of regulators, non-governmental organisations and the media, and shipping companies are under pressure to find new ways to reduce their emission footprint. Understanding the determinants of the energy efficiency gap in shipping is then critical in improving the environmental profile of the industry. This paper presents the results of a survey among Norwegian shipping companies aimed at gaining a better understanding of the barriers to implementation of new cost saving technologies. The paper assesses the technical barriers that have traditionally been indicated as the main cause of the energy efficiency gap in shipping. The paper results indicate that next to technical factors, important barriers are constituted also by managerial practices and legal constraints.展开更多
Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control sy...Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control systems, without considering the pervasive nonlinearities(e.g. valve stiction) present in most industrial control systems. In this work, a novel probability distribution distance based index is proposed to monitor the performance of non-linear control systems. The proposed method uses Hellinger distance to evaluate change of control system performance. Several simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
In the study, E. sibiricus L. cv. chuancao No. 2 was allocated to plots in a randomized block design with five row gradients (30, 45, 60, 75 and 90 cm). At the flowering stage, the root, stem, leaf and inflorescence...In the study, E. sibiricus L. cv. chuancao No. 2 was allocated to plots in a randomized block design with five row gradients (30, 45, 60, 75 and 90 cm). At the flowering stage, the root, stem, leaf and inflorescence of population, as well as the quantitative traits of components, biomass structure, accumulation and distribution proportion of energy were measured and analyzed. For different row spacings, there are highly significant differences between total tillers and ratio of fertile tillers per square meter and significant differences among the eustipes length, eustipes number and natural height of each tiller; but there are no significant differences among the leaf length, leaf width and leaf number of each tiller. A significant difference is found between the depth and distribution range of root, inflorescence stalk, and ear number of fertile tillers, and the biomass of leaf, stem, root and inflorescence. The influenced order is stem 〉 leave 〉 root 〉 inflorescence. No significant influence is found among the energy values of single leaf, stem, root and inflorescence; but a significant influence is found among the energy accumulation of the leaf, stem, root and inflorescence with the effect degree being stem 〉 leaf 〉 inflorescence 〉 root. Significant differences are also found among the energy distribution of each component with the order of leaf〉 stem 〉 inflorescence 〉 root.展开更多
Water shutoff through injection wells is one of the most important techniques used for water injection profile control and modification in severely heterogeneous reservoirs,aiming at stabilizing oil production.It has ...Water shutoff through injection wells is one of the most important techniques used for water injection profile control and modification in severely heterogeneous reservoirs,aiming at stabilizing oil production.It has been widely reported that the effectiveness and efficiency of water shutoff using gel is mostly dependent on the gel dynamic sealing properties in the porous media.Firstly the gelation strength and gelation time of polymer gel were evaluated.Then,core flowing experiments were conducted before and after gelation in a 32 m long sand pack.In addition,water flooding core experiments were also carried out in a long core of 80 cm before and after injecting gel system to check the reliability of this evaluation method.The experimental results show that moderate-strength gel can be formed at 65 °C.According to the integrated evaluation of the plugging coefficient,plugging strength and water breakthrough time,the gel particles are capable of migrating to a distance of 7.47 m from the injection point of the 32 m long sand pack during the water injection process after gelation.Based on sands gelation status and effluent analyses,the effective migration distance of the gel particles is 4-14 m.Through the core flooding experiments using the 80 cm heterogeneous core,it is evidenced that the gel can be formed in the deep reservoir(40.63% of total length) with the plugging strength as high as 6.33 MPa/m,which leads to extra oil recovery of 10.55% of original oil in place(OOIP) by water flooding after gel treatment.展开更多
The properties of muonic helium atom (^4He+2μ-e-) in ground state are considered. In this work, the energy and average distance between particles have been obtained using a wave function, which satisfies boundary ...The properties of muonic helium atom (^4He+2μ-e-) in ground state are considered. In this work, the energy and average distance between particles have been obtained using a wave function, which satisfies boundary conditions. It is shown that the obtained energy are very close to the values calculated by others. But the small differences of the expectation values of r^2n are due to the incorporated boundary conditions in proposed wave function and are expected.展开更多
In the study of brain-computer interfaces,a method of feature extraction and classification used fortwo kinds of imaginations is proposed.It considers Euclidean distance between mean traces recorded fromthe channels w...In the study of brain-computer interfaces,a method of feature extraction and classification used fortwo kinds of imaginations is proposed.It considers Euclidean distance between mean traces recorded fromthe channels with two kinds of imaginations as a feature,and determines imagination classes using thresh-old value.It analyzed the background of experiment and theoretical foundation referring to the data sets ofBCI 2003,and compared the classification precision with the best result of the competition.The resultshows that the method has a high precision and is advantageous for being applied to practical systems.展开更多
The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good c...The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good corrosion resistance and high mechanical performance.In this paper,an Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy was fabricated via SLM.The characteristics of single track at different process parameters,and the influence of hatch spacing on densification,microstructural features and tensile properties of block specimens were systematically studied.The hatch spacing has an influence on the overlap ratio of single track,and further affects the internal forming quality of printed specimen.At a laser power of 160 W and scanning speed of 400 mm/s,the densification of block specimen increased first and then decreased with the increase of hatch spacing.The nearly full dense specimen(98.7%)with a tensile strength of 452 MPa was fabricated at a hatch spacing of 80μm.Typical characteristics of dimple and cleavage on the tensile fracture of the AlMgSiScZr alloy showed the mixed fracture of ductility and brittleness.展开更多
基金Supported by the Special Fund for Crop Breeding of Sichuan Provincial Department of Education,China (2006LD006)the Rapeseed Breeding Research Program of Science & Technology Department of Sichuan Province,China (2006YZGG-5-5)~~
文摘[Objective] To study the correlation between the biomechanical properties of rape stalks and rape stem lodging. [Method] Through axial compression tests to the stalks of 4 different rape varieties, the change rules of maximum stem bearing ca- pacity, maximum compressive strength, elastic modulus and moment of inertia along plant height were analyzed, as well as the effect of different varieties and water contents on the biomechanical property indices of rape stalks. [Result] The maximum loads of rape stalks presented liner decrease trend along with the increase of stem height, and all reached the maximums below the height of 50 cm. The maximum stem compressive strength and elastic modulus of the 4 varieties were increased with ascending height, but in a slow rate with small change, thus the modulus of e- lasticity could be considered as unchanged. The maximum bearing capacity, maxi- mum compressive strength and elastic modulus of dry rape stalks were higher than wet stalks, indicating that the water contents of rape stalks had significant effect on their mechanical properties. According to the actual lodging situations in filed, stalks of variety No. 1 owned the worst biomechanical properties and lodging degree, while the biomechanical properties of No. 6 and F5 were better than No. 1 and No. 9, and they also had stronger lodging-resistance. [Conclusion] The study provides parameters and bases for the design of mechanized production and mechanical deep processing of crops, and can better reveal the physical natures of organisms. The methods used in this study can also be used to screen excellent crop stalks.
文摘Experimental studies are carried out at a low speed axial compressor with five different rotor/stator gaps. Analysis of the effect of axial spacing of two successive blade rows on the measured mean flow coefficient at stall inception and on the flow range of compressor under multi-cell rotating stall operating conditions proves that the stator can suppress the flow disturbance in the compressor and strengthen the stability of the compressor. Experimental data show that the stall flow coefficient decreases by reducing the axial spacing of successive blade rows. Moreover, by reducing the axial spacing, the stall pattern transition pace from multi-cell stall to single-cell stall can be shifted. And the compressor directly slips into single-cell stall at 21.0% CR axial spacing. By analyzing the pressure fluctuation closed to the surge line, it can be known that there exists an eigenfrequency where the amplitude of the oscillating pressure suddenly and dramatically increases as the compressor runs close to the surge line and this pressure disturbance is relevant to the compressor instability.
文摘By means of the relationship between speed and distance headway, this paperattempts to directly determine the road capacity based on a new concept. At first it makes acomprehensive analysis of distance headway, including safe distance headway and desired one. Theformer is decided by the demand for the degree of safety, and the latter depends on the motorists'behavior, i.e. the model of traffic flow. Both of them are functions of speed. According to thecharacteristics of their curves, we can find a crossing point that is the capacity of a roadsegment. This capacity represents the maximum flow rate meeting the minimum safety requirement.
文摘To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.
基金Project(51302044)supported by the National Natural Science Foundation of ChinaProject(2012M521596)supported by the Chinese Postdoctoral Science FoundationProject(KLB11003)supported by the Key Laboratory of Clean Energy Materials of Guangdong Higher Education Institute,China
文摘Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.
基金Project(2007CB613702)supported by the National Basic Research Program of ChinaProject(2008BB4323)supported by the Natural Science Foundation of Chongqing Science and Technology Commission,ChinaProject(2010DFR50010)supported by the International Scientific and Technological Cooperation Projects,China
文摘The as-cast Mg-8Li-3Al-0.5Mn-xSr(LAM830-xSr, x=0-1.0) alloys were designed and prepared in a vacuum induction furnace under controlled argon atmosphere. The alloys were then processed by hot extrusion, and their microstructural evolution and mechanical properties were analyzed. Results indicate that the LAM830 alloy mainly consists of α-Mg, β-Li, Al2Mn3, and LiMgAl2 phases. Sr addition results in the precipitation of Al-Sr. Moreover, Sr addition results in a fact that the secondary dendrite arm spacing(DAS) of the primary α-Mg phase is obvious refined. Microstructure of the investigated alloys is further refined as a result of the hot extrusion treatment. The content and morphology of the secondary phases have important effects on the mechanical properties of the alloys. The as-extruded LAM830-0.5Sr alloy exhibits an optimal elongation of 22.43% and as-extruded LAM830-0.75 Sr alloy shows an optimal tensile strength of 265.46 MPa.
文摘Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors that determine their performance,which makes reliable and effective detection methods of internal defects essential. Nondestructive testing(NDT)methods are the most widely-used way due to their tremendous advantages. Though the theoretical background is found,experimental results could be quite complicated and confusing,especially for composite materials with complex defects characteristics. In this paper,experimental study on internal defects in composite materials based on the time of flight(ToF)are investigated. The Gaussian echo model and the parameter estimation methods are established to build a theoretical model for measurements. Then,the distance amplitude correction(DAC)method is proposed to effectively improve the signal-to-noise ratio(SNR)and to reduce distortion of the signal during measurements. Finally,the ToF is adopted to determine depth of internal defects. Experiment study is conducted to investigate the porosity defects and the anti-impact performance of composite materials,as well as defects in objects with various thicknesses. Experimental results show that the proposed method is quite helpful for obtaining the intuition and deep understanding of internal defects,thus contributing to the determination of product performance and its improvement.
基金Supported by the Graduate Innovation Foundation of Shanxi Province of China(2015BY44)
文摘A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of FTIJs were investigated using particle image velocimetry(PIV). The instantaneous and mean velocities data at different Reynolds numbers(Re) were analyzed to provide insights into the velocity distributions in FTIJs. The effect of jet spacing on the stagnation points, instantaneous velocity, mean velocity, profiles of the x- and ycomponents of mean velocity, and turbulent kinetic energy(TKE) distributions of FTIJs were investigated at Re = 4100 with a volumetric flow rate ratio of 0.5. The characteristics of the turbulent flows are similar for all jet spacings tested. Two stagnation points are observed, which are independent of jet spacing and are not located in the center of the flow field. However, velocity and TKE distributions are strongly dependent on the jet spacing.Decreasing jet spacing increases the expansion angle and the values of TKE, leading to strong turbulence, improving momentum transfer and mixing efficiency in FTIJs. The present study shows that optimization of the operating parameters is helpful for designing FTIJs.
基金Projects(51227001,51420105005)supported by the National Natural Science Foundation of ChinaProject(138-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘Directional solidification of Mg-2.35Gd (mass fraction, %) magnesium alloy was carried out to investigate the effects of the solidification parameters (growth rate v and temperature gradient G) on microstructure and room temperature mechanical properties under the controlled solidification conditions. The specimens were solidified under steady state conditions with different temperature gradients (G=20, 25 and 30 K/mm) in a wide range of growth rates (v=10-200 μm/s) by using a Bridgman-type directional solidification furnace with liquid metal cooling (LMC) technology. The cellular microstructures are observed. The cellular spacing 2 decreases with increasing v for constant G or with increasing G for constant v. By using a linear regression analysis the relationships can be expressed as 2=136.216v^-0.2440 (G=30 K/mm) and 2=626.5630G^-0.5625 (v=10 μm/s), which are in a good agreement with Trivedi model. An improved tensile strength and a corresponding decreased elongation are achieved in the directionally solidified experimental alloy with increasing growth rate and tempertaure gradient. Furthermore, the directionally solidified experimental alloy exhibits higher room temperature tensile strength than the non-directionally solidified alloy.
基金Sponsored by the National Natural Science Foundation of China (No.60573141, 60773041)National 863 High Tech- nology Research Program of China (No.2007AA01Z404, 2007AA01Z478)+2 种基金High Technology Research Programme of Jiangsu Province (No.BG2006001)Key Laboratory of Information Technology Processing of Jiangsu Province (kjs06006)Project of NJUPT (NY207135)
文摘Cache performance tuning tools are conducive to develop program with good locality and fully use cache to decrease the influence caused by speed gap between processor and memory. This paper introduces the design and implementation of a cache performance tuning tool named CTuning, which employs a source level instrumentation method to gather program data access information, and uses a limited reuse distance model to analyze cache behavior. Experiments on 183.equake improve average performance more than 6% and show that CTuning is proficient not only in locating cache performance bottlenecks to guide manual code transformation, but also in analyzing cache behavior relationship among variables, thus to direct manual data reorganization.
基金Project(61106113)supported by the National Natural Science Foundation of China
文摘A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscillator phase noise, which is the main error source for microwave ranging systems, can be significantly attenuated. Further, since the range measurements are derived on the same satellite, the dual transponder ranging system does not need a time tagging system to synchronize the two satellites. In view of the lack of oscillator noise analysis on the dual transponder ranging model, a comprehensive analysis of oscillator noise effects on ranging accuracy is provided. First, the dual transponder ranging system is described with emphasis on the detailed analysis of oscillator noise on measurement precision. Then, a high-fidelity numerical simulation approach based on the power spectrum density of an actual ultra-stable oscillator is carried out in both frequency domain and time domain to support the presented theoretical analysis. The simulation results under different conditions are consistent with the proposed concepts, which makes the results reliable. Besides, the results demonstrate that a high level of accuracy can be achieved by using this oscillator noise cancelation-oriented ranging method.
基金supported by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China
文摘Non-Line-of-Sight(NLOS)Ultraviolet(UV)communication uses the atmosphere as a propagation medium.As the communication range increases,turbulence becomes a significant atmospheric process that affects the propagation of optical waves.This paper presents a more accurate NLOS channel model by considering turbulence-induced Scintillation Attenuation(SA).Then,the Bit Error Rate(BER)during turbulence of the NLOS UV communication system with On-Off Keying(OOK)modulation and Maximum Likelihood(ML)detection is analysed and compared with that in free space without turbulence.The BER dependence is also analysed for different factors,including the refractive index structure parameter,transceiver range,pointing angles,transmitted power,and data rate.
文摘In this research paper, an attempt has been made to come across the effect of distance between double glazing on the efficiency of a solar thermal collector. Experiments were carded out on an active solar energy demonstration system (ET 200). Commercial glass pane of 3 mm thick having the same dimensions as that of the apparatus was placed above the collector at a distance of 2 cm, 4 cm and 6 cm. Tests were done with and without the added glass. Experiments were performed for double glazing with two positions of the light meter. In one position, it was placed in the middle of the collector surface. While, in the other one, the light meter was placed in the middle of the added glass. To study the effect of double glazing on the performance of the solar collector ET 200, the correct position of the light meter was to place it exactly in the middle of the additional pane under the lamp. Double glazing does not enhance the performance of the solar collector because of the high resistance of the system glass air glass. The efficiency of double glazing solar collector decreases with the increasing the distance of the two separated glasses.
文摘There is evidence that the shipping industry could achieve energy efficiency gains through the implementation of new technologies, with considerable reductions of fuel costs and emissions to air in the sector. Although the cost reducing effects of some new technologies are well established, companies appear reluctant to innovate despite the financial and societal benefits, as a result of what is referred to as the energy efficiency gap. The global emission impacts of the shipping industry, most notably of greenhouse gases, sulphur and nitrogen oxides are increasingly attracting the attention of regulators, non-governmental organisations and the media, and shipping companies are under pressure to find new ways to reduce their emission footprint. Understanding the determinants of the energy efficiency gap in shipping is then critical in improving the environmental profile of the industry. This paper presents the results of a survey among Norwegian shipping companies aimed at gaining a better understanding of the barriers to implementation of new cost saving technologies. The paper assesses the technical barriers that have traditionally been indicated as the main cause of the energy efficiency gap in shipping. The paper results indicate that next to technical factors, important barriers are constituted also by managerial practices and legal constraints.
基金Supported by the National Natural Science Foundation of China(61134007,61203157)the National Science Fund for Outstanding Young Scholars(61222303)+1 种基金the Fundamental Research Funds for the Central Universities(22A20151405)Shanghai R&D Platform Construction Program(13DZ2295300)
文摘Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control systems, without considering the pervasive nonlinearities(e.g. valve stiction) present in most industrial control systems. In this work, a novel probability distribution distance based index is proposed to monitor the performance of non-linear control systems. The proposed method uses Hellinger distance to evaluate change of control system performance. Several simulation examples are given to illustrate the effectiveness of the proposed method.
文摘In the study, E. sibiricus L. cv. chuancao No. 2 was allocated to plots in a randomized block design with five row gradients (30, 45, 60, 75 and 90 cm). At the flowering stage, the root, stem, leaf and inflorescence of population, as well as the quantitative traits of components, biomass structure, accumulation and distribution proportion of energy were measured and analyzed. For different row spacings, there are highly significant differences between total tillers and ratio of fertile tillers per square meter and significant differences among the eustipes length, eustipes number and natural height of each tiller; but there are no significant differences among the leaf length, leaf width and leaf number of each tiller. A significant difference is found between the depth and distribution range of root, inflorescence stalk, and ear number of fertile tillers, and the biomass of leaf, stem, root and inflorescence. The influenced order is stem 〉 leave 〉 root 〉 inflorescence. No significant influence is found among the energy values of single leaf, stem, root and inflorescence; but a significant influence is found among the energy accumulation of the leaf, stem, root and inflorescence with the effect degree being stem 〉 leaf 〉 inflorescence 〉 root. Significant differences are also found among the energy distribution of each component with the order of leaf〉 stem 〉 inflorescence 〉 root.
基金Project(2011ZX05009-004)supported by the National Significant Science and Technology Program of China
文摘Water shutoff through injection wells is one of the most important techniques used for water injection profile control and modification in severely heterogeneous reservoirs,aiming at stabilizing oil production.It has been widely reported that the effectiveness and efficiency of water shutoff using gel is mostly dependent on the gel dynamic sealing properties in the porous media.Firstly the gelation strength and gelation time of polymer gel were evaluated.Then,core flowing experiments were conducted before and after gelation in a 32 m long sand pack.In addition,water flooding core experiments were also carried out in a long core of 80 cm before and after injecting gel system to check the reliability of this evaluation method.The experimental results show that moderate-strength gel can be formed at 65 °C.According to the integrated evaluation of the plugging coefficient,plugging strength and water breakthrough time,the gel particles are capable of migrating to a distance of 7.47 m from the injection point of the 32 m long sand pack during the water injection process after gelation.Based on sands gelation status and effluent analyses,the effective migration distance of the gel particles is 4-14 m.Through the core flooding experiments using the 80 cm heterogeneous core,it is evidenced that the gel can be formed in the deep reservoir(40.63% of total length) with the plugging strength as high as 6.33 MPa/m,which leads to extra oil recovery of 10.55% of original oil in place(OOIP) by water flooding after gel treatment.
文摘The properties of muonic helium atom (^4He+2μ-e-) in ground state are considered. In this work, the energy and average distance between particles have been obtained using a wave function, which satisfies boundary conditions. It is shown that the obtained energy are very close to the values calculated by others. But the small differences of the expectation values of r^2n are due to the incorporated boundary conditions in proposed wave function and are expected.
基金supported by the Shanghai Education Commission Foundation for Excellent Young High Education Teacher(No.sdj08001)
文摘In the study of brain-computer interfaces,a method of feature extraction and classification used fortwo kinds of imaginations is proposed.It considers Euclidean distance between mean traces recorded fromthe channels with two kinds of imaginations as a feature,and determines imagination classes using thresh-old value.It analyzed the background of experiment and theoretical foundation referring to the data sets ofBCI 2003,and compared the classification precision with the best result of the competition.The resultshows that the method has a high precision and is advantageous for being applied to practical systems.
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(E2019203418)supported by the Natural Science Foundation of Hebei Province,China。
文摘The selective laser melting(SLM)processed aluminum alloys have already aroused researchers’attention in aerospace,rail transport and petrochemical engineering due to the comprehensive advantages of low density,good corrosion resistance and high mechanical performance.In this paper,an Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy was fabricated via SLM.The characteristics of single track at different process parameters,and the influence of hatch spacing on densification,microstructural features and tensile properties of block specimens were systematically studied.The hatch spacing has an influence on the overlap ratio of single track,and further affects the internal forming quality of printed specimen.At a laser power of 160 W and scanning speed of 400 mm/s,the densification of block specimen increased first and then decreased with the increase of hatch spacing.The nearly full dense specimen(98.7%)with a tensile strength of 452 MPa was fabricated at a hatch spacing of 80μm.Typical characteristics of dimple and cleavage on the tensile fracture of the AlMgSiScZr alloy showed the mixed fracture of ductility and brittleness.