OBJECTIVE To investigate the damage effect and mechanisms of cyclophosphamide(CTX)and its active metabolite derivative 4-hydroperoxycyclophosphamide(4-HC)to human neuroblas⁃toma SH-SY5Y cells.METHODS SH-SY5Y cells wer...OBJECTIVE To investigate the damage effect and mechanisms of cyclophosphamide(CTX)and its active metabolite derivative 4-hydroperoxycyclophosphamide(4-HC)to human neuroblas⁃toma SH-SY5Y cells.METHODS SH-SY5Y cells were treated with CTX[0(cell control),0.01,0.1,1,5,10,20,40 and 80 mmol·L^(-1)]and 4-HC[0(cell control),0.01,0.1,1,5,10,20,40 and 80μmol·L^(-1)]for 48 h.Cell confluence and morphology were observed by the IncuCyte ZOOM system.Cell viability was assessed by CCK-8 assay.Lactate dehydrogenase(LDH)release was measured by LDH assay kit.SH-SY5Y cells were treated with CTX(0,1,5,10 and 20 mmol·L^(-1))and 4-HC(0,1,5,10 and 20μmol·L^(-1))for 48 h before cell proliferation was analyzed by 5-ethynyl-2′-deoxyuridine(EdU)staining assay.Immunofluorescence was employed to assess the levels of the DNA double-strand break markerγ-H2AX and to evaluate changes in mitochondrial membrane potential.SH-SY5Y cells were treated with CTX(0,1,5 and 10 mmol·L^(-1))and 4-HC(0,1,5 and 10μmol·L^(-1))for 48 h,and the alterations in glycolysis and oxidative phosphorylation levels were analyzed using the Seahorse XFe96 Analyzer.RESULTS Compared with the cell control group,cell confluence and cell viability were significantly reduced in the CTX and 4-HC groups(P<0.01),and the half-maximal inhibitory concentrations(IC50)for CTX and 4-HC were 4.44 mmol·L^(-1) and 4.78μmol·L^(-1),respectively.The release rate of LDH was signif⁃icantly increased while the percentage of EdU+cells was significantly reduced in the CTX and 4-HC groups(P<0.01).The percentage ofγ-H2AX+cells was significantly increased and mitochondrial membrane potential significantly decreased in the CTX and 4-HC group(P<0.05).Treatment with CTX and 4-HC resulted in reduced levels of maximum glycolytic capacity,glycolytic reserve,maximal respi⁃ration,and ATP production(P<0.05).CONCLUSION CTX and 4-HC exert significant cytotoxic effects on SH-SY5Y cells by disrupting cell membrane structure,impeding cell proliferation,and reducing cell viability.The mechanisms underlying these effects may involve intracellular DNA damage,disturbance of energy metabolism and mitochondrial dysfunction.展开更多
The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the tran...The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.展开更多
AIM: To study the role of mitochondrial energy disorder in the pathogenesis of ethanol-induced gastric mucosa injury. METHODS: Wistar rats were used in this study. A gastric mucosal injury model was established by giv...AIM: To study the role of mitochondrial energy disorder in the pathogenesis of ethanol-induced gastric mucosa injury. METHODS: Wistar rats were used in this study. A gastric mucosal injury model was established by giving the rats alcohol. Gross and microscopic appearance of gastric mucosa and ultrastructure of mitochondria were evaluated. Malondiadehyde (MDA) in gastric mucosa was measured with thiobarbituric acid. Expression of ATP synthase (ATPase) subunits 6 and 8 in mitochondrial DNA (mtDNA) was determined by reverse transcription polymerase chain reaction (RT- PCR). RESULTS:The gastric mucosal lesion index was correlated with the MDA content in gastric mucosa. As the concentration of ethanol was elevated and theexposure time to ethanol was extended, the content of MDA in gastric mucosa increased and the extent of damage aggravated. The ultrastructure of mitochondria was positively related to the ethanol concentration and exposure time. The expression of mtDNA ATPase subunits 6 and 8 mRNA declined with the increasing MDA content in gastric mucosa after gavage with ethanol. CONCLUSION: Ethanol-induced gastric mucosa injury is related to oxidative stress, which disturbs energy metabolism of mitochondria and plays a critical role in the pathogenesis of ethanol-induced gastric mucosa injury.展开更多
AIM: To study and determine the resting energy ex- penditure (REE) and oxidation rates of glucose, fat and protein in severe chronic hepatitis B patients. METHODS: A total of 100 patients with liver diseases were cate...AIM: To study and determine the resting energy ex- penditure (REE) and oxidation rates of glucose, fat and protein in severe chronic hepatitis B patients. METHODS: A total of 100 patients with liver diseases were categorized into three groups: 16 in the acute hepatitis group, 56 in the severe chronic hepatitis group, and 28 in the cirrhosis group. The REE and the oxidation rates of glucose, fat and protein were as- sessed by indirect heat measurement using the CCM-D nutritive metabolic investigation system. RESULTS: The REE of the severe chronic hepatitis group (20.7 ± 6.1 kcal/d per kg) was significantly lower than that of the acute hepatitis group (P = 0.014). The respiratory quotient (RQ) of the severe chronic hepatitis group (0.84 ± 0.06) was significantly lower than that of the acute hepatitis and cirrhosis groups (P = 0.001). The glucose oxidation rate of the severe hepatitis group (39.2%) was significantly lower than that of the acute hepatitis group and the cirrhosis group (P < 0.05), while the fat oxidation rate (39.8%) in the severe hepatitis group was markedly higher than that of the other two groups (P < 0.05). With improve- ment of liver function, the glucose oxidation rate in- creased from 41.7% to 60.1%, while the fat oxidation rate decreased from 26.3% to 7.6%. CONCLUSION: The glucose oxidation rate is signifi-cantly decreased, and a high proportion of energy is provided by fat in severe chronic hepatitis. These re- sults warrant a large clinical trail to assess the optimal nutritive support therapy for patients with severe liver disease.展开更多
AIM: To evaluate the protective effect of diallyl sulfide (DAS) against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis.METHODS: Male Wistar rats received either NDEA or NDEA together with DAS as protection....AIM: To evaluate the protective effect of diallyl sulfide (DAS) against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis.METHODS: Male Wistar rats received either NDEA or NDEA together with DAS as protection.Liver energy metabolism was assessed in terms of lactate,pyruvate,lactate/pyruvate,ATP levels,lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD) activities.In addition,membrane disintegration of the liver cells was evaluated by measuring lipid-peroxidation products,measured as malondialdehyde (MDA); nitric oxide (NO) levels; glucose-6-phosphatase (G6Pase),catalase (CAT) and superoxide dismutase (SOD) activities.Liver DNA level,glutathione-S-transferase (GST) and cytochrome c oxidase activities were used as DNA fragmentation indices.Aldose reductase (AR) activity was measured as an index for cancer cells resistant to chemotherapy and histopathological examination was performed on liver sections from different groups.RESULTS: NDEA significantly disturbed liver functions and most of the aforementioned indices.Treatment with DAS significantly restored liver functions and hepatocellular integrity; improved parameters of energy metabolism and suppressed free-radical generation.CONCLUSION: We provide evidence that DAS exerts a protective role on liver functions and tissue integrity in face of enhanced tumorigenesis caused by NDEA,as well as improving cancer-cell sensitivity to chemotherapy.This is mediated through combating oxidative stress of free radicals,improving the energy metabolic state of the cell,and enhancing the activity of G6Pase,GST and AR enzymes.展开更多
This study aimed to discuss the energy budget of Elliot's pheasant Syrmaticus ellioti in different seasons, with life and health, good growth and normal digestion of Elliot's pheasant as the tested objects, Th...This study aimed to discuss the energy budget of Elliot's pheasant Syrmaticus ellioti in different seasons, with life and health, good growth and normal digestion of Elliot's pheasant as the tested objects, The energy budget of Elliot's pheasant was measured by daily collection of the trial pheasants' excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012. The results showed that the gross energy consumption, metabolic energy and excrement energy varied by season, increasing as temperature decreased. There was significant difference in gross energy consumption, metabolic energy, excrement energy between adults and nonages. There was also a trend that food digestibility of pheasants increases as temperature increases. In the same season, the food digestibility of adults was better than that of nonages. Throughout spring, summer, autumn and winter, the metabolic energy of 4-year adults were 305.77±13.40 kJ/d, 263.67±11.89 kJ/d, 357.23±25.49 kJ/d and 403.12±24.91 kJ/d, respectively, and the nonages were 284.86±17.22 kJ/d, 284. 66±15.16 kJ/d, 402. 26±31.46 kJ/d and 420. 30±31.98 kJ/d, respectively. The minimum metabolic energies were 247.65±21.81 g, 265.86±26.53 g, respectively for each group, detected between 4-year adults and 1-year nonages. Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot's pheasant.展开更多
Objective:To investigate the characteristics of fat metabolism in rat skeletal muscle after hypobaric hypoxia acclimation. Methods: Sprague-Dawley rats were divided into 3 groups randomly: control group (H0), hyp...Objective:To investigate the characteristics of fat metabolism in rat skeletal muscle after hypobaric hypoxia acclimation. Methods: Sprague-Dawley rats were divided into 3 groups randomly: control group (H0), hypoxic 5-day group (HS), and hypoxic 15-day group (H15). Animals of H5 and 15 groups were exposed to hypobaric hypoxia chamber simulating 5 000 m high altitude for 5 d or 15 d respectively, 23 h per day. H0 group stayed outside of chamber The level of fatty acid oxidation and uptake, and glucose oxidation were examined, and the level of non-esterified fatty acids (NEFA), ATP and phosphocreatine (PCr) were also assayed in rat skeletal muscles. Results: The contents of ATP and PCr in H5 group were lower than those in H0 and H15 groups (P〈0.05), while there was no significant difference between H0 and H15. Compared with H0, the blood NEFA level in all hypoxia groups was increased significantly (P〈0.05). The muscle NEFA level in H15 group was greatly higher than that in H0 and H5 groups. The rates of fatty acid oxidation and uptake in H15 group were significantly higher than those in H0 and H5 groups (P〈0.05), and the rate of glucose oxidation in all hypoxia groups was significantly decreased than that in H0 group (P〈0.05). Conclusion: It is concluded that the enhanced fat oxidation may be one of the mechanisms in the maintenance of energy homeostasis after hypobaric hypoxic acclimation.展开更多
The energy metabolism structure of microbial community plays an important role in the process of biohydrometallurgy.In this article,an artificial microbial community composed of three strains(Acidithiobacillus ferroox...The energy metabolism structure of microbial community plays an important role in the process of biohydrometallurgy.In this article,an artificial microbial community composed of three strains(Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum and Acidithiobacillus thiooxidans)was used to leach three kinds of chalcopyrites with different iron-sulfur ratios.After 36 d of leaching,the chalcopyrite with iron-sulfur ratio of about 1:1 achieved the highest copper extraction(69.62%).In the early stage,iron oxidizing bacteria predominated,and the expression of rus and rio was 8 times higher than that in the late stage.In the late stage,sulfur oxidizing bacteria predominated,and the expression of tetH and HdrAB was 4 times higher than that in the early stage.Furthermore,the three bioleaching systems above were added with elemental sulfur(3 g/L);the chalcopyrite with iron-sulfur ratio of about 2:1 achieved the highest copper extraction(80.63%).The results suggest that the energy metabolism structure of the microbial community could be changed by changing the iron-sulfur ratio during the leaching process for improving the leaching efficiency of chalcopyrite.展开更多
Objective To investigate the effects of captopril on cardiac function and levels of energy-rich phosphates in pressure overload induced left ventricular hypertrophy rats. Methods One hundred and twenty SD rats were ra...Objective To investigate the effects of captopril on cardiac function and levels of energy-rich phosphates in pressure overload induced left ventricular hypertrophy rats. Methods One hundred and twenty SD rats were randomly divided into three groups: sham operation group (SH group, n=40),coarctation of abdominal aorta group (CAA group, n=40) and captopril treatment lmg~ 100g1 ~ d-1) group (CAP group, n=40). Left ventricular end-diastolic pressure (LVEDP), left venh-icular mass index (LVMI), levels of energy-rich phosphates and morphological changes of the myocardial mitochondria were compared at the 62 and 82 week after operation. Results At 62 week, in CAA group, LVMI and LVEDP were increased and _ dp/dtmax was decreased, while ATP and ADP were decreased and AMP was increased (P〈0.01). These changes were much obvious at 8th week (P〈0.01). Compared with those of CAA group, the parameters of heart function and energy-rich phosphates (ATP, ADP, AMP, TAN) in CAP group were improved significantly(P〈0.01) at the 6th and 8th week. In CAP group, the parameters of heart function and energy-rich phosphates (ADP, AMP, TAN) were much better at 8~ week than those at 6th week. The morphological change of mitochondria was less in CAP group than that in CAA group. Conclusion Captopril significantly improves myocardial energy metabolism in pressure overload rats and protects the function of myocardial mitochondria展开更多
Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress will become more and more serious. This paper reviewed the effects of heat stress on metabolism...Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress will become more and more serious. This paper reviewed the effects of heat stress on metabolism of proteins, glucose, fat and energy in skeletal muscle and related mechanisms so as to provide theoretical guidance for alleviating heat stress and improving production performance of animal suffering from heat stress.展开更多
Along with Chinese economic growth,energy plays a more and more important role in the national economy.The imbalance between insufficient energy supply and huge energy demand has become a major problem in energy utili...Along with Chinese economic growth,energy plays a more and more important role in the national economy.The imbalance between insufficient energy supply and huge energy demand has become a major problem in energy utilization,and energy substitution is attracting more and more attention as a key to the sustainable and sound development of Chinese economy.Explored the possibilities of the mutual substitution of the two types of energy with different functions with game theory in light of the supply capacity.As a con- clusion,there are four equilibrium results corresponding to different levels of supply capac- ity.Subsequently,we carry on the study further by numerical simulation,investigate in one group of results most close to Chinese energy status and find the equilibrium price as well as the demand variation pattern.展开更多
Objective:Baoyuan decoction(BYD)is a traditional Chinese formula with myocardial protection efficacy validated by modern pharmacological tests.The present study aimed to investigate the effect and mechanism of BYD on ...Objective:Baoyuan decoction(BYD)is a traditional Chinese formula with myocardial protection efficacy validated by modern pharmacological tests.The present study aimed to investigate the effect and mechanism of BYD on alleviating myocardial infarction(MI).Methods:Nuclear magnetic resonance-based serum and urinary metabolomics were employed to explore the metabolic regulation effects of BYD in rats with MI induced by left anterior descending ligation.Oxygen-glucose deprivation/recovery(OGD/R)model in H9c2 cells and multiple molecular biology approaches were used to clarify the underlying action mechanisms of BYD.Results:BYD treatment recovered the serum and urinary metabolite profiles of the MI rats toward normal metabolic status and significantly improved mitochondrial energy metabolism and apoptosis pathways perturbed by MI.Analysis of the molecular mechanism of BYD indicated that it suppressed OGD/R-induced H9c2 cell apoptosis in a concentration-dependent manner by inhibiting the mitochondria-dependent caspase-9/3-poly ADP-ribose polymerase pathway.Conclusions:Our results demonstrate that BYD protects against myocardial apoptosis via the mitochondrial metabolic and apoptosis pathways.They also provide novel insights into the clinical application of BYD for the treatment of ischemic heart diseases.展开更多
文摘OBJECTIVE To investigate the damage effect and mechanisms of cyclophosphamide(CTX)and its active metabolite derivative 4-hydroperoxycyclophosphamide(4-HC)to human neuroblas⁃toma SH-SY5Y cells.METHODS SH-SY5Y cells were treated with CTX[0(cell control),0.01,0.1,1,5,10,20,40 and 80 mmol·L^(-1)]and 4-HC[0(cell control),0.01,0.1,1,5,10,20,40 and 80μmol·L^(-1)]for 48 h.Cell confluence and morphology were observed by the IncuCyte ZOOM system.Cell viability was assessed by CCK-8 assay.Lactate dehydrogenase(LDH)release was measured by LDH assay kit.SH-SY5Y cells were treated with CTX(0,1,5,10 and 20 mmol·L^(-1))and 4-HC(0,1,5,10 and 20μmol·L^(-1))for 48 h before cell proliferation was analyzed by 5-ethynyl-2′-deoxyuridine(EdU)staining assay.Immunofluorescence was employed to assess the levels of the DNA double-strand break markerγ-H2AX and to evaluate changes in mitochondrial membrane potential.SH-SY5Y cells were treated with CTX(0,1,5 and 10 mmol·L^(-1))and 4-HC(0,1,5 and 10μmol·L^(-1))for 48 h,and the alterations in glycolysis and oxidative phosphorylation levels were analyzed using the Seahorse XFe96 Analyzer.RESULTS Compared with the cell control group,cell confluence and cell viability were significantly reduced in the CTX and 4-HC groups(P<0.01),and the half-maximal inhibitory concentrations(IC50)for CTX and 4-HC were 4.44 mmol·L^(-1) and 4.78μmol·L^(-1),respectively.The release rate of LDH was signif⁃icantly increased while the percentage of EdU+cells was significantly reduced in the CTX and 4-HC groups(P<0.01).The percentage ofγ-H2AX+cells was significantly increased and mitochondrial membrane potential significantly decreased in the CTX and 4-HC group(P<0.05).Treatment with CTX and 4-HC resulted in reduced levels of maximum glycolytic capacity,glycolytic reserve,maximal respi⁃ration,and ATP production(P<0.05).CONCLUSION CTX and 4-HC exert significant cytotoxic effects on SH-SY5Y cells by disrupting cell membrane structure,impeding cell proliferation,and reducing cell viability.The mechanisms underlying these effects may involve intracellular DNA damage,disturbance of energy metabolism and mitochondrial dysfunction.
文摘The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.
基金National Natural Science Foundation of China, No. 30750013Natural Science Foundation of Fujian Province, No. X0650091
文摘AIM: To study the role of mitochondrial energy disorder in the pathogenesis of ethanol-induced gastric mucosa injury. METHODS: Wistar rats were used in this study. A gastric mucosal injury model was established by giving the rats alcohol. Gross and microscopic appearance of gastric mucosa and ultrastructure of mitochondria were evaluated. Malondiadehyde (MDA) in gastric mucosa was measured with thiobarbituric acid. Expression of ATP synthase (ATPase) subunits 6 and 8 in mitochondrial DNA (mtDNA) was determined by reverse transcription polymerase chain reaction (RT- PCR). RESULTS:The gastric mucosal lesion index was correlated with the MDA content in gastric mucosa. As the concentration of ethanol was elevated and theexposure time to ethanol was extended, the content of MDA in gastric mucosa increased and the extent of damage aggravated. The ultrastructure of mitochondria was positively related to the ethanol concentration and exposure time. The expression of mtDNA ATPase subunits 6 and 8 mRNA declined with the increasing MDA content in gastric mucosa after gavage with ethanol. CONCLUSION: Ethanol-induced gastric mucosa injury is related to oxidative stress, which disturbs energy metabolism of mitochondria and plays a critical role in the pathogenesis of ethanol-induced gastric mucosa injury.
基金The fund from Beijing Science and Technology Commission (Z0006264040791, H010210110129)National Key Project of China 21st Century (96-920-37-20)
文摘AIM: To study and determine the resting energy ex- penditure (REE) and oxidation rates of glucose, fat and protein in severe chronic hepatitis B patients. METHODS: A total of 100 patients with liver diseases were categorized into three groups: 16 in the acute hepatitis group, 56 in the severe chronic hepatitis group, and 28 in the cirrhosis group. The REE and the oxidation rates of glucose, fat and protein were as- sessed by indirect heat measurement using the CCM-D nutritive metabolic investigation system. RESULTS: The REE of the severe chronic hepatitis group (20.7 ± 6.1 kcal/d per kg) was significantly lower than that of the acute hepatitis group (P = 0.014). The respiratory quotient (RQ) of the severe chronic hepatitis group (0.84 ± 0.06) was significantly lower than that of the acute hepatitis and cirrhosis groups (P = 0.001). The glucose oxidation rate of the severe hepatitis group (39.2%) was significantly lower than that of the acute hepatitis group and the cirrhosis group (P < 0.05), while the fat oxidation rate (39.8%) in the severe hepatitis group was markedly higher than that of the other two groups (P < 0.05). With improve- ment of liver function, the glucose oxidation rate in- creased from 41.7% to 60.1%, while the fat oxidation rate decreased from 26.3% to 7.6%. CONCLUSION: The glucose oxidation rate is signifi-cantly decreased, and a high proportion of energy is provided by fat in severe chronic hepatitis. These re- sults warrant a large clinical trail to assess the optimal nutritive support therapy for patients with severe liver disease.
文摘AIM: To evaluate the protective effect of diallyl sulfide (DAS) against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis.METHODS: Male Wistar rats received either NDEA or NDEA together with DAS as protection.Liver energy metabolism was assessed in terms of lactate,pyruvate,lactate/pyruvate,ATP levels,lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD) activities.In addition,membrane disintegration of the liver cells was evaluated by measuring lipid-peroxidation products,measured as malondialdehyde (MDA); nitric oxide (NO) levels; glucose-6-phosphatase (G6Pase),catalase (CAT) and superoxide dismutase (SOD) activities.Liver DNA level,glutathione-S-transferase (GST) and cytochrome c oxidase activities were used as DNA fragmentation indices.Aldose reductase (AR) activity was measured as an index for cancer cells resistant to chemotherapy and histopathological examination was performed on liver sections from different groups.RESULTS: NDEA significantly disturbed liver functions and most of the aforementioned indices.Treatment with DAS significantly restored liver functions and hepatocellular integrity; improved parameters of energy metabolism and suppressed free-radical generation.CONCLUSION: We provide evidence that DAS exerts a protective role on liver functions and tissue integrity in face of enhanced tumorigenesis caused by NDEA,as well as improving cancer-cell sensitivity to chemotherapy.This is mediated through combating oxidative stress of free radicals,improving the energy metabolic state of the cell,and enhancing the activity of G6Pase,GST and AR enzymes.
基金National Natural Science Foundation of China(31160426 30560023)the Projects of Science and Technology Office of Hunan (2011FJ3071)
文摘This study aimed to discuss the energy budget of Elliot's pheasant Syrmaticus ellioti in different seasons, with life and health, good growth and normal digestion of Elliot's pheasant as the tested objects, The energy budget of Elliot's pheasant was measured by daily collection of the trial pheasants' excrement in the biological garden of Guangxi Normal University from March 2011 to February 2012. The results showed that the gross energy consumption, metabolic energy and excrement energy varied by season, increasing as temperature decreased. There was significant difference in gross energy consumption, metabolic energy, excrement energy between adults and nonages. There was also a trend that food digestibility of pheasants increases as temperature increases. In the same season, the food digestibility of adults was better than that of nonages. Throughout spring, summer, autumn and winter, the metabolic energy of 4-year adults were 305.77±13.40 kJ/d, 263.67±11.89 kJ/d, 357.23±25.49 kJ/d and 403.12±24.91 kJ/d, respectively, and the nonages were 284.86±17.22 kJ/d, 284. 66±15.16 kJ/d, 402. 26±31.46 kJ/d and 420. 30±31.98 kJ/d, respectively. The minimum metabolic energies were 247.65±21.81 g, 265.86±26.53 g, respectively for each group, detected between 4-year adults and 1-year nonages. Further study is needed to determine whether 29.6 C is the optimal temperature for the Elliot's pheasant.
基金the National Basic Research Program of China(2006CB504100)the National Natural Science Foundation of China (30393131, 30771043)
文摘Objective:To investigate the characteristics of fat metabolism in rat skeletal muscle after hypobaric hypoxia acclimation. Methods: Sprague-Dawley rats were divided into 3 groups randomly: control group (H0), hypoxic 5-day group (HS), and hypoxic 15-day group (H15). Animals of H5 and 15 groups were exposed to hypobaric hypoxia chamber simulating 5 000 m high altitude for 5 d or 15 d respectively, 23 h per day. H0 group stayed outside of chamber The level of fatty acid oxidation and uptake, and glucose oxidation were examined, and the level of non-esterified fatty acids (NEFA), ATP and phosphocreatine (PCr) were also assayed in rat skeletal muscles. Results: The contents of ATP and PCr in H5 group were lower than those in H0 and H15 groups (P〈0.05), while there was no significant difference between H0 and H15. Compared with H0, the blood NEFA level in all hypoxia groups was increased significantly (P〈0.05). The muscle NEFA level in H15 group was greatly higher than that in H0 and H5 groups. The rates of fatty acid oxidation and uptake in H15 group were significantly higher than those in H0 and H5 groups (P〈0.05), and the rate of glucose oxidation in all hypoxia groups was significantly decreased than that in H0 group (P〈0.05). Conclusion: It is concluded that the enhanced fat oxidation may be one of the mechanisms in the maintenance of energy homeostasis after hypobaric hypoxic acclimation.
基金Project(2017zzts382)supported by Central South University Postgraduate Independent Exploration and Innovation,ChinaProject(2014jpkc003)supported by Central South University Graduate Excellent Course,China+1 种基金Project(2015JJ2165)supported by Hunan Provincial Natural Science Foundation of ChinaProject(165611031)supported by Central South University Fundamental Research Funds Special Funding,China。
文摘The energy metabolism structure of microbial community plays an important role in the process of biohydrometallurgy.In this article,an artificial microbial community composed of three strains(Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum and Acidithiobacillus thiooxidans)was used to leach three kinds of chalcopyrites with different iron-sulfur ratios.After 36 d of leaching,the chalcopyrite with iron-sulfur ratio of about 1:1 achieved the highest copper extraction(69.62%).In the early stage,iron oxidizing bacteria predominated,and the expression of rus and rio was 8 times higher than that in the late stage.In the late stage,sulfur oxidizing bacteria predominated,and the expression of tetH and HdrAB was 4 times higher than that in the early stage.Furthermore,the three bioleaching systems above were added with elemental sulfur(3 g/L);the chalcopyrite with iron-sulfur ratio of about 2:1 achieved the highest copper extraction(80.63%).The results suggest that the energy metabolism structure of the microbial community could be changed by changing the iron-sulfur ratio during the leaching process for improving the leaching efficiency of chalcopyrite.
基金Corresponding author: Dr. Cao Xuebin, MD, Department of Cardiology, 252 Hospital of Chinese PLA, Baoding 071000,Hebei Province,China Email: cxb252@yahoo.com.cn. This study was supported by the National Natural Science Foundation of China (30873398), Research Project of "Eleventh Five-year Plan" for Medical Science Development of PLA(2006MA064) and the Research Project of Hebei Province (06276012D- 114).
文摘Objective To investigate the effects of captopril on cardiac function and levels of energy-rich phosphates in pressure overload induced left ventricular hypertrophy rats. Methods One hundred and twenty SD rats were randomly divided into three groups: sham operation group (SH group, n=40),coarctation of abdominal aorta group (CAA group, n=40) and captopril treatment lmg~ 100g1 ~ d-1) group (CAP group, n=40). Left ventricular end-diastolic pressure (LVEDP), left venh-icular mass index (LVMI), levels of energy-rich phosphates and morphological changes of the myocardial mitochondria were compared at the 62 and 82 week after operation. Results At 62 week, in CAA group, LVMI and LVEDP were increased and _ dp/dtmax was decreased, while ATP and ADP were decreased and AMP was increased (P〈0.01). These changes were much obvious at 8th week (P〈0.01). Compared with those of CAA group, the parameters of heart function and energy-rich phosphates (ATP, ADP, AMP, TAN) in CAP group were improved significantly(P〈0.01) at the 6th and 8th week. In CAP group, the parameters of heart function and energy-rich phosphates (ADP, AMP, TAN) were much better at 8~ week than those at 6th week. The morphological change of mitochondria was less in CAP group than that in CAA group. Conclusion Captopril significantly improves myocardial energy metabolism in pressure overload rats and protects the function of myocardial mitochondria
基金Supported by Key Project of Natural Science Foundation of Hubei Province(2013CFA100)National Natural Science Foundation of China(31472117)
文摘Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress will become more and more serious. This paper reviewed the effects of heat stress on metabolism of proteins, glucose, fat and energy in skeletal muscle and related mechanisms so as to provide theoretical guidance for alleviating heat stress and improving production performance of animal suffering from heat stress.
文摘Along with Chinese economic growth,energy plays a more and more important role in the national economy.The imbalance between insufficient energy supply and huge energy demand has become a major problem in energy utilization,and energy substitution is attracting more and more attention as a key to the sustainable and sound development of Chinese economy.Explored the possibilities of the mutual substitution of the two types of energy with different functions with game theory in light of the supply capacity.As a con- clusion,there are four equilibrium results corresponding to different levels of supply capac- ity.Subsequently,we carry on the study further by numerical simulation,investigate in one group of results most close to Chinese energy status and find the equilibrium price as well as the demand variation pattern.
基金financially supported by the National Natural Sciences Foundation of China(Nos.81530097 and 81222051)the National Key Technology R&D Program“New Drug Innovation”of China(No.2017ZX09101003-008-003).
文摘Objective:Baoyuan decoction(BYD)is a traditional Chinese formula with myocardial protection efficacy validated by modern pharmacological tests.The present study aimed to investigate the effect and mechanism of BYD on alleviating myocardial infarction(MI).Methods:Nuclear magnetic resonance-based serum and urinary metabolomics were employed to explore the metabolic regulation effects of BYD in rats with MI induced by left anterior descending ligation.Oxygen-glucose deprivation/recovery(OGD/R)model in H9c2 cells and multiple molecular biology approaches were used to clarify the underlying action mechanisms of BYD.Results:BYD treatment recovered the serum and urinary metabolite profiles of the MI rats toward normal metabolic status and significantly improved mitochondrial energy metabolism and apoptosis pathways perturbed by MI.Analysis of the molecular mechanism of BYD indicated that it suppressed OGD/R-induced H9c2 cell apoptosis in a concentration-dependent manner by inhibiting the mitochondria-dependent caspase-9/3-poly ADP-ribose polymerase pathway.Conclusions:Our results demonstrate that BYD protects against myocardial apoptosis via the mitochondrial metabolic and apoptosis pathways.They also provide novel insights into the clinical application of BYD for the treatment of ischemic heart diseases.