In this paper we consider data transmission in a decode-and-forward(DF)relay-assisted network in which the relay is energy harvesting(EH) powered while the base station(BS) is power-grid powered.Our purpose is to maxi...In this paper we consider data transmission in a decode-and-forward(DF)relay-assisted network in which the relay is energy harvesting(EH) powered while the base station(BS) is power-grid powered.Our purpose is to maximize the BS's energy efficiency(EE) while making full use of the relay's renewable energy and satisfying the specific average throughput requirements.In contrast to existing literature on energy harvesting system which only considers the radio transmission power,we take the static circuit power into account as well.We formulate the EE optimization problem and prove that the EE of the BS and relay are both quasiconvex in the instantaneous transmission rate.Then we divide the complex optimization problem into two point-to-point link level optimization parts and propose an energyefficient resource allocation(EERA) scheme in which power control and sleep mode management are jointly used.The simulation results demonstrate that EERA may achieve good energy saving effects.We also compare the EE of an energy harvesting relay system with a power-grid powered one and provide more insight into the EE problem of energy harvesting relay system.展开更多
In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channe...In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.展开更多
As the first invention to efficiently harvest electricity from ambient mechanical energy by using contact electrification, the triboelectric nanogenerator has elicited worldwide attention because of its cost-effective...As the first invention to efficiently harvest electricity from ambient mechanical energy by using contact electrification, the triboelectric nanogenerator has elicited worldwide attention because of its cost-effectiveness and sustainability. This study exploits a superhydrophobic nanostructured aluminum tube to estimate electrical output for solid-water contact electrification inside a tubular system. The linearly proportional relationship of short-circuit current and open-circuit voltage to the detaching speed of water was determined by using a theoretical energy harvesting model and experimentation. A pioneering stick-type solid-water interacting triboelectric nanogenerator, called a SWING stick, was developed to harvest mechanical energy through solid-water contact electrification generated when the device is shaken by hand. The electrical output generated by various kinds of water from the environment was also measured to demonstrate the concept of the SWING stick as a compact triboelectric nanogenerator. Several SWING sticks were connected to show the feasibility of the device as a portable and compact source of direct power. The developed energy harvesting model and the SWING stick can provide a guideline for the design parameters to attain a desired electrical output; therefore, this study can significantly increase the applicability of a water-driven triboelectric nanogenerator.展开更多
Deepwater offshore structures such as semi-submersible platforms suffer powerful ocean waves due to their location and site condition. The long distance away from the shore also brings many difficulties to energy supp...Deepwater offshore structures such as semi-submersible platforms suffer powerful ocean waves due to their location and site condition. The long distance away from the shore also brings many difficulties to energy supply for the platform operation. How to reduce the response of the platform and convert the wave energy into electrical power is a meaningful topic. In this paper, a tuned heave plate system(THP) is presented and designed to be employed on a semi-submersible platform for heave motion suppression and energy harvesting. This THP system is composed of spring supports, a power take-off system(PTO), and a heave plate. The PTO system is a permanent magnet linear generator(PMLG), which could directly convert the kinetic energy of the heave plate into electronic power. The stiffness of the spring supports is designed based on the principle of the tuned mass damper(TMD). The numerical model of the platform and the THP system is established according to the hydrodynamic analysis results of the platform. The model is tested and modified by scale model tests on the platform in the wave tank. A parameter study, including the size, tuned period, and damping ratio of the THP system, is conducted systematically based on the numerical model. The optimal parameters of the THP are selected due to the maximum heave motion reduction under severe wave conditions in South China Sea. The performance of the semi-submersible with and without the THP system under different wave conditions is analyzed. It is demonstrated that this novel tuned heave plate system could reduce the heave motion of the semi-submersible platform significantly and generate considerable power, which makes the THP system have a broad prospect for development.展开更多
基金supported by National programs for High Technology Research and Development(2012AA011402)National Basic Research Program of China(2012CB316002)National Nature Science Foundation of China(61172088)
文摘In this paper we consider data transmission in a decode-and-forward(DF)relay-assisted network in which the relay is energy harvesting(EH) powered while the base station(BS) is power-grid powered.Our purpose is to maximize the BS's energy efficiency(EE) while making full use of the relay's renewable energy and satisfying the specific average throughput requirements.In contrast to existing literature on energy harvesting system which only considers the radio transmission power,we take the static circuit power into account as well.We formulate the EE optimization problem and prove that the EE of the BS and relay are both quasiconvex in the instantaneous transmission rate.Then we divide the complex optimization problem into two point-to-point link level optimization parts and propose an energyefficient resource allocation(EERA) scheme in which power control and sleep mode management are jointly used.The simulation results demonstrate that EERA may achieve good energy saving effects.We also compare the EE of an energy harvesting relay system with a power-grid powered one and provide more insight into the EE problem of energy harvesting relay system.
基金supported by National Nature Science Foundation of China(NO.61372109)
文摘In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.
文摘As the first invention to efficiently harvest electricity from ambient mechanical energy by using contact electrification, the triboelectric nanogenerator has elicited worldwide attention because of its cost-effectiveness and sustainability. This study exploits a superhydrophobic nanostructured aluminum tube to estimate electrical output for solid-water contact electrification inside a tubular system. The linearly proportional relationship of short-circuit current and open-circuit voltage to the detaching speed of water was determined by using a theoretical energy harvesting model and experimentation. A pioneering stick-type solid-water interacting triboelectric nanogenerator, called a SWING stick, was developed to harvest mechanical energy through solid-water contact electrification generated when the device is shaken by hand. The electrical output generated by various kinds of water from the environment was also measured to demonstrate the concept of the SWING stick as a compact triboelectric nanogenerator. Several SWING sticks were connected to show the feasibility of the device as a portable and compact source of direct power. The developed energy harvesting model and the SWING stick can provide a guideline for the design parameters to attain a desired electrical output; therefore, this study can significantly increase the applicability of a water-driven triboelectric nanogenerator.
基金supported by the National Natural Science Foundation of China(Grant No.50921001)the National Basic Research Program of China("973"Project)(Grant No.2011CB013705)
文摘Deepwater offshore structures such as semi-submersible platforms suffer powerful ocean waves due to their location and site condition. The long distance away from the shore also brings many difficulties to energy supply for the platform operation. How to reduce the response of the platform and convert the wave energy into electrical power is a meaningful topic. In this paper, a tuned heave plate system(THP) is presented and designed to be employed on a semi-submersible platform for heave motion suppression and energy harvesting. This THP system is composed of spring supports, a power take-off system(PTO), and a heave plate. The PTO system is a permanent magnet linear generator(PMLG), which could directly convert the kinetic energy of the heave plate into electronic power. The stiffness of the spring supports is designed based on the principle of the tuned mass damper(TMD). The numerical model of the platform and the THP system is established according to the hydrodynamic analysis results of the platform. The model is tested and modified by scale model tests on the platform in the wave tank. A parameter study, including the size, tuned period, and damping ratio of the THP system, is conducted systematically based on the numerical model. The optimal parameters of the THP are selected due to the maximum heave motion reduction under severe wave conditions in South China Sea. The performance of the semi-submersible with and without the THP system under different wave conditions is analyzed. It is demonstrated that this novel tuned heave plate system could reduce the heave motion of the semi-submersible platform significantly and generate considerable power, which makes the THP system have a broad prospect for development.