期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
一种提升蓄电池后备时长的新方法
1
作者 郝滨海 《通信与信息技术》 2024年第3期39-42,54,共5页
电源是通信系统的重要组成部分,通信电源系统运行质量的好坏直接关系到通信网络的运行质量和通信安全。基于目前各通信运营企业和铁塔公司在汇聚机房和基站机房的电源设备维护过程中,存在运行电池组的单体电池寿命短,供电时间不足,达不... 电源是通信系统的重要组成部分,通信电源系统运行质量的好坏直接关系到通信网络的运行质量和通信安全。基于目前各通信运营企业和铁塔公司在汇聚机房和基站机房的电源设备维护过程中,存在运行电池组的单体电池寿命短,供电时间不足,达不到设计使用寿命的问题。通过蓄电池智慧管理、铅酸+铁锂电池融合组网应用、备电系统远程智能管理的新方法,提升蓄电池后备时长的能力,来提升电源系统运行质量。 展开更多
关键词 单体电 智能管理 能量池 后备时长
下载PDF
三元正极材料清洗废水资源化回收零排放处理工艺 被引量:2
2
作者 季宏飞 秦佩 吴晓伟 《当代化工》 CAS 2023年第10期2487-2491,2496,共6页
锂电三元正极材料在清洗过程中产生含有Li^(+)、Al^(3+)、SO_(4)^(2-)、镍钴锰氧化物及少量其他离子的废水,对该三元正极材料清洗废水的资源化回收零排放处理工艺进行了阐述。该废水处理系统涉及的成套工艺包括预处理单元、废水减量化... 锂电三元正极材料在清洗过程中产生含有Li^(+)、Al^(3+)、SO_(4)^(2-)、镍钴锰氧化物及少量其他离子的废水,对该三元正极材料清洗废水的资源化回收零排放处理工艺进行了阐述。该废水处理系统涉及的成套工艺包括预处理单元、废水减量化单元、沉锂单元和制纯水单元。重点对Al^(3+)的去除、膜浓缩、沉锂等关键工艺进行了重点描述,最后通过实际与理论对比分析,达到了预期的设计目标——锂资源得到有效回收、废水实现全部回用。通过对实际案例的相关数据的例举和分析,证明了本套废水处理工艺的可行性和可靠性,为锂电三元正极材料清洗废水的治理提供了典型的参考工艺路线。 展开更多
关键词 三元正极材料 锂资源回收 废水零排放 膜浓缩 蒸发结晶
下载PDF
一种微网群架构及其自主协调控制策略 被引量:42
3
作者 周小平 陈燕东 +2 位作者 周乐明 罗安 伍文华 《电工技术学报》 EI CSCD 北大核心 2017年第10期123-134,共12页
微网群作为多个交、直流子网的互联系统,其组成结构的复杂性增加了微网群的功率协调控制难度。提出一种微网群架构及其自主协调控制策略,该架构主要包括交、直流子网,功率交换单元(PEU)和能量池(EP)。PEU主要用于协调微网群内各子网与E... 微网群作为多个交、直流子网的互联系统,其组成结构的复杂性增加了微网群的功率协调控制难度。提出一种微网群架构及其自主协调控制策略,该架构主要包括交、直流子网,功率交换单元(PEU)和能量池(EP)。PEU主要用于协调微网群内各子网与EP进行功率交换,使得各子网实现能量互济,并维持各子网母线电压及频率的稳定;EP主要用于维持EP直流侧母线电压的稳定运行,并实现对PEU所需交换净功率的合理分配。针对PEU和EP分别提出基于自适应功率交换系数的功率协调控制方法和分层协调控制方法,有效地实现了微网群的自主协调控制。仿真与实验结果都证明了所提微网群架构及其自主协调控制策略的有效性。 展开更多
关键词 直流微电网 交流微电网 微网群 功率交换单元 能量池
下载PDF
Organic Photovoltaic Cells with Improved Performance Using Bathophenanthroline as a Buffer Layer 被引量:5
4
作者 王娜娜 于军胜 +1 位作者 林慧 蒋亚东 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期84-88,I0002,共6页
The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes fr... The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60. 展开更多
关键词 Organic photovoltaic cell Buffer layer Bathophenanthroline Charge carrier transport
下载PDF
Effect of the amount of zinc-doped on the electrochemical performance of nickel hydroxide 被引量:1
5
作者 YUDanmei ZHOUShangqi +2 位作者 CHENChangguo WENLi WANGHuaqing 《Journal of Chongqing University》 CAS 2004年第1期74-77,共4页
The nickel hydroxide prepared by micro-emulsion method was doped by coprecipitated Zn. The effect of the amount of zinc-doped on the properties of Ni(OH)2 such as the reversibility of the electrode reaction, the charg... The nickel hydroxide prepared by micro-emulsion method was doped by coprecipitated Zn. The effect of the amount of zinc-doped on the properties of Ni(OH)2 such as the reversibility of the electrode reaction, the charge efficiency and active material utilization ratio of nickel electrode, and discharge specific capacity was studied by cyclic voltammetry and constant current charge-discharge tests. The results indicate that the specific discharge capacity of nickel hydroxide obtained by micro-emulsion method is much less than its theoretical value because the transfer of electrons and the diffusion of protons H+ are hindered owing to its crystal grain size in a nanometer range and thus possessing higher crystal interface resistance. The crystal cells are swelled and the crystal defects increased in prepared material due to part of Ni2+ substituted by Zn2+ when zinc and nickel hydroxide are coprecipitated. Hence, the electrons and protons H+ in the electrode reaction are transferred easily, the electrochemical behavior of nickel electrode is improved and discharge specific capacity is promoted. However, the performance of Ni(OH)2 is gradually enhanced with the addition of zinc-doped at first, while slowly decreased after the content of zinc is added to a certain value. The best electrode reaction reversibility, the highest electrode charge efficiency, the highest active material utilization ratio and the largest specific capacity on discharge are available when the mass fraction of Zn doped in nickel hydroxide by coprecipitation reaches 2.5 %. 展开更多
关键词 nickel hydroxide coprecipitation zinc-doped MICRO-EMULSION
下载PDF
Energy-Transfer Processes of Xe(6p[1/2]0,6p[3/2]2,and 6p[5/2]2) Atoms under the Condition of Ultrahigh Pumped Power
6
作者 Shan He Jun-zhi Chu +9 位作者 Dong Liu Xue-yang Li Jing-wei Guo Jin-bo Liu Shu Hu Hui Li Peng-yuan Wang Ying Chen Feng-ting Sang Yu-qi Jin 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第6期741-748,733,共9页
The kinetic processes of Xe(6p[1/2]0, 6p[3/2]2, and 6p[5/2]2) atoms under the focused condition were investigated. The atomic density of the laser prepared state significantly increases. Therefore, the probability of ... The kinetic processes of Xe(6p[1/2]0, 6p[3/2]2, and 6p[5/2]2) atoms under the focused condition were investigated. The atomic density of the laser prepared state significantly increases. Therefore, the probability of the energy-pooling between two high-lying atoms increases. There are three major types of the energy-pooling collisions. The first type is the energy-pooling ionization. Once the excitation laser is focused, the obvious ionization can be observed from the side window whenever the laser prepared state is 6p[1/2]0, 6p[3/2]2, or 6p[5/2]2 state. Ionization of Xe is attributed to the energy-pooling ionization or a Xe* atom reabsorbing another excitation photon. The second type is energy-pooling with big energy difference. When the 6p[1/2]0 state is the laser prepared state, the energy-pooling collision between two 6p[1/2]0 atoms can produce one 5d[3/2]1 atom and one 6s'[1/2]0 atom. The third type is energy-pooling with small energy difference. The intensities of fluorescence lines are much stronger that five secondary 6p states act as the upper states, and the rising edges of these fluorescence lines are much steeper. The primary mechanism of generating the secondary 6p atoms is energy-pooling collision instead of collision relaxation. Based on the collision probability, the rate of energy-pooling between two 6p[1/2]0 atoms is deduced (6.39x10^8s-1). In addition, the 6s atoms also increase under the focused condition. Therefore, all the fluorescence lines are serious trailing by radiation trapping. 展开更多
关键词 Energy-pooling KINETICS XE Ultrahigh pumped power
下载PDF
Mechanism for capacity fading of 18650 cylindrical lithium ion batteries 被引量:4
7
作者 Jian-liang CHENG Xin-hai LI +1 位作者 Zhi-xing WANG Hua-jun GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1602-1607,共6页
The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by X... The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by XRD,SEM,EIS and CV.Impedance measurement shows an overall increase in the cell resistance upon cycling.Moreover,it also presents anincreased charge-transfer resistance(Rct)for the cell cycled at RT.CV test shows that the reversibility of lithium ioninsertion/extraction reaction is reduced.The capacity fading for the cells cycled can be explained by taking into account the repeatedfilm formation over the surface of anode and the side reactions.The products of side reactions deposited on separator are able toreduce the porosity of separator.As a result,the migration resistance of lithium ion between the cathode and anode would beincreased,leading the fading of capacity and potential. 展开更多
关键词 18650 lithium ion battery capacity fading cycle performance
下载PDF
High Efficiency Polymer Solar Cells Technologies
8
作者 Abdrhman M G 《Semiconductor Photonics and Technology》 CAS 2006年第4期262-264,共3页
The conjugated polymer-based solar cell is one of the most promising devices in search of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certa... The conjugated polymer-based solar cell is one of the most promising devices in search of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certainly the fastest growing one at the moment. In addition, the key factor for polymer-based solar cells with high-efficiency is to invent new materials. Organic solar cell has attracted significant researches and commercial interest due to its low cost in fabrication and flexibility in applications. However, they suffer from relatively low conversion efficiency. The summarization of the significance and concept of high efficiency polymer solar cell technologies are presented. 展开更多
关键词 POLYMER Solar cells EFFICIENCY
下载PDF
Electrochemical performance of nano-scale β-Ni(OH)_2 prepared at different transformations of pH value
9
作者 赵力 张利军 +1 位作者 韩喜江 张翠芬 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第2期160-163,共4页
The influence of transforming pH values on the electrochemical performance of nano-scale Ni (OH)2 was analyzed. The measurement results of XRD indicate that the nano-scale Ni (OH) 2 prepared at different transform... The influence of transforming pH values on the electrochemical performance of nano-scale Ni (OH)2 was analyzed. The measurement results of XRD indicate that the nano-scale Ni (OH) 2 prepared at different transformations of pH value is β ( Ⅱ )-phase with different crystal lattice parameters. Cyclic voltammograms (CV) and electrochemical impedance spectroscopy(EIS) measurement results show that transformations of pH value affect the proton diffusion coefficient (D) and charge-transfer resistance (Re,) of the material. The simulation of.cell experiment shows that the sample prepared at a pH of 10. 1 exhibits the maximum specific capacity (327.8 mAh/g) and higher discharge platform, the discharge performance of electrodes depends on both D and Rct, so the kinetics characteristics that electrodes reaction is controlled by both mass-transfer step and charge- transfer step are put forward. 展开更多
关键词 nano-material Ni(OH)2 ELECTROCHEMICAL transformations of pH value
下载PDF
An improved joint method for onset picking of acoustic emission signals with noise 被引量:4
10
作者 ZHOU Zi-long CHENG Rui-shan +2 位作者 CHEN Lian-jun ZHOU Jing CAI Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2878-2890,共13页
The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on th... The onset times of acoustic signals with spikes,heavy bodies and unclear takeoffs are difficult to be picked accurately by the automatic method at present.To deal with this problem,an improved joint method based on the discrete wavelet transform(DWT),modified energy ratio(MER)and Akaike information criterion(AIC)pickers,has been proposed in this study.First,the DWT is used to decompose the signal into various components.Then,the joint application of MER and AIC pickers is carried out to pick the initial onset times of all selected components,where the minimum AIC position ahead of MER onset time is regarded as the initial onset time.Last,the average for initial onset times of all selected components is calculated as the final onset time of this signal.This improved joint method is tested and validated by the acoustic signals with different signal to noise ratios(SNRs)and waveforms.The results show that the improved joint method is not affected by the variations of SNR,and the onset times picked by this method are always accurate in different SNRs.Moreover,the onset times of all acoustic signals with spikes,heavy bodies and unclear takeoffs can be accurately picked by the improved joint method.Compared to some other methods including MER,AIC,DWT-MER and DWT-AIC,the improved joint method has better SNR stabilities and waveform adaptabilities. 展开更多
关键词 Akaike information criterion(AIC) modified energy ratio(MER) discrete wavelet transform(DWT) acoustic signals with noise
下载PDF
Overcharge performance of LiMn_2O_4/graphite battery with large capacity 被引量:3
11
作者 刘云建 李新海 +3 位作者 郭华军 王志兴 胡启阳 彭文杰 《Journal of Central South University》 SCIE EI CAS 2009年第5期763-767,共5页
The LiMn2O4/grapbite battery was fabricated and its 3 C/10 V overcharge performance was studied. Spinel LiMn2O4 was synthesized by solid-state method and 325680-type size full battery was fabricated. The structure and... The LiMn2O4/grapbite battery was fabricated and its 3 C/10 V overcharge performance was studied. Spinel LiMn2O4 was synthesized by solid-state method and 325680-type size full battery was fabricated. The structure and morphology of the powders were characterized by XRD and SEM technique, respectively. The battery explodes after 3 C/10 V overcharged test, and surface temperature of the battery case arrives at 290 ℃ in 12 s after exploding. Black air is given out with blast. Carbon, MnO, and Li2CO3 are observed in the exploded powders. The cathode electrode remains spinel structure with 5.0 V charged. Cracks in the cathode electrode particles are detected with the increase of voltage by SEM technique. The 5.0 V charged electrode can decompose into Mn3O4 at 400 ℃. It is demonstrated that the decomposition of 5.0 V charged electrode can be promoted and Mn^4+ can be deoxidized to Mn^2+ by carbon and electrolyte through the simulation of blast process. 展开更多
关键词 LIMN2O4 MNO BATTERY OVERCHARGE BLAST
下载PDF
Building Model of Photovoltaic Cell Module with MATLAB Simulink
12
作者 Lotfi Rachedi Cherif Fatha Tahar Bahi 《Journal of Energy and Power Engineering》 2013年第11期2188-2192,共5页
In this paper, a PV (photovoltaic) module in renewable energy conversion system is simulated. The simulation of the system is developed using MATLAB/Simulink environments, which can be representative of PV cell, mod... In this paper, a PV (photovoltaic) module in renewable energy conversion system is simulated. The simulation of the system is developed using MATLAB/Simulink environments, which can be representative of PV cell, module and array for easy use on simulation block. The PV model is developed using basic circuit equations of the photovoltaic solar cells including the effects of irradiation and temperature. The output current and power characteristics of PV model are simulated. The results are provided and presented here. 展开更多
关键词 Photovoltaic model DEVELOPED simulation MATLAB.
下载PDF
Measuring Method for Shunt Resistance of Solar Cell
13
作者 CHENTingjin WANGDongxiang 《Semiconductor Photonics and Technology》 CAS 1998年第1期62-66,共5页
Shunt resistance of solar cell must be monitored for large area solar cell manufactured with conventional process.A measuring method for the shunt resistance is derived from direct-current model.The shunt resistance o... Shunt resistance of solar cell must be monitored for large area solar cell manufactured with conventional process.A measuring method for the shunt resistance is derived from direct-current model.The shunt resistance of solar cell is obtained only by treating a part of I-V data. 展开更多
关键词 Direct-current Model Measuring Method Shunt Resistance Solar Cell
下载PDF
Exploiting Quantum Confinement for Future Solar Cell Application
14
作者 M.Y. Sulaiman U.C. Ahamefula K. Sopian Z. Ibarahim M.A. Alghoul M.Y. Othman N. Amin 《Journal of Energy and Power Engineering》 2010年第1期26-34,共9页
Present solar cells are expensive making photovoitaic electricity only attractive whenever there is government incentive. This paper highlights the cost of photovoltaic classified according to first, second and third ... Present solar cells are expensive making photovoitaic electricity only attractive whenever there is government incentive. This paper highlights the cost of photovoltaic classified according to first, second and third generations. The first and second generations make up the current photovoltaic. The reasons for the efficiency limitation of the first and second generation photovoltaic are given. Nanoparticles such as quantum dots have confinement properties that can be exploited to improve solar cell efficiency and help reduce the cost. Quantum effect that support hot electron collection and multiple exciton generation through impact ionization are discussed. These form the basis of the future generation quantum dot solar cell. 展开更多
关键词 Photovoltaic electricity photovoltaic generations efficiency quantum dot solar cell quantum yield multiple exciton generation impact ionization.
下载PDF
Applications of Laser Precisely Processing Technology in Solar Cells
15
作者 WANG Hong-jie CHENG Hua +2 位作者 XIE Kang-wen LU Fu-yun DU Yong-chao 《Optoelectronics Letters》 EI 2007年第5期385-387,共3页
According to the design method of laser resonator cavity, we optimized the primary parameters of resonator and utilized LD arrays symmetrically pumping manner to implementing output of the high-brightness laser in our... According to the design method of laser resonator cavity, we optimized the primary parameters of resonator and utilized LD arrays symmetrically pumping manner to implementing output of the high-brightness laser in our laser cutter, then which was applied to precisely cutting the conductive film of CulnSe2 solar cells, the buried contact silicon solar cells' electrode groove, and perforating in wafer which is used to the emitter wrap through silicon solar cells. Laser processing precision was less than 40μm, the results have met solar cell's fabrication technology, and made fmally the buried cells' conversion efficiency be improved from 18% to 21%. 展开更多
关键词 太阳能电 激光技术 共振容量 初始参数
下载PDF
Compact Electric Energy Storage for Marine Vehicles Using on-Board Hydrogen Production
16
作者 Alon Gany Shani Elitzur Valery Rosenband 《Journal of Shipping and Ocean Engineering》 2015年第4期151-158,共8页
The use of electric energy in marine vessels has been increasing in recent years. In general, it is motivated by the low ecological impact. However, in the case of underwater vehicles it is functionally essential. The... The use of electric energy in marine vessels has been increasing in recent years. In general, it is motivated by the low ecological impact. However, in the case of underwater vehicles it is functionally essential. The objective of this study is to demonstrate the advantage of electric power generation and storage based on on-board hydrogen generation via the reaction between activated aluminum and water and application of the hydrogen in a fuel cell. The original activation process enabling a spontaneous reaction with water to produce hydrogen as well as a parametric study of hydrogen generation rate and yield are briefly described. The potential increase in specific energy (energy per unit mass) and energy density (energy per unit volume) vs. batteries and other means of hydrogen storage is presented. It is shown that the use of the present technology may result in a substantial increase of specific electric energy along with a reduction in volume or an increase in operating time for the same overall mass of energy storage and generation system. 展开更多
关键词 Hydrogen production aluminum-water reaction activated aluminum fuel cell energy storage marine electric power.
下载PDF
Experimental study on heat generation and dissipation performance of PEV Lithium-ion battery 被引量:3
17
作者 孙逢春 Chen Ke Lin Cheng Wang Zhenpo 《High Technology Letters》 EI CAS 2010年第1期1-5,共5页
Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal c... Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward. 展开更多
关键词 pure electric vehicle (PEV) lithium-ion battery heat generation heat dissipation
下载PDF
New Li-ion Battery Evaluation Research Based on Thermal Property and Heat Generation Behavior of Battery 被引量:1
18
作者 Zhe Lv Xun Guo Xin-ping Qiu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第6期725-732,I0004,共9页
We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 ce... We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evalu- ated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge- discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included De-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter U. The relationship between R, η, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries. 展开更多
关键词 Li-ion battery Energy loss HEAT Cell resistance POLARIZATION State of chargeprediction
下载PDF
The Energy Optimization Mathematic Algorithm on Multi-energy Resource Powertrain of Fuel Cell Vehicle
19
作者 张毅 郭海涛 +1 位作者 杨林 卓斌 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期500-505,共6页
In order to solve the core issue of the energy regulation (ER) on multi-energy resource powertrain of fuel cell vehicle, the work functions of each component were defined; the mathematical algorithm model of energy ... In order to solve the core issue of the energy regulation (ER) on multi-energy resource powertrain of fuel cell vehicle, the work functions of each component were defined; the mathematical algorithm model of energy regulation was established and the relevant solution was found. This algorithm was evaluated successfully on the hardware in loop (FILL) platform under three typical urban running cycles. The results showed ER control target had been realized and the mathematical algorithm was effective and reasonable. Based on the HIL simulation, some conclusions and ER strategies were made. According to the different power component parameters and real time control request, this algorithm should be modified and calibrated for application in the actual control system. 展开更多
关键词 multi-energy powertrain fuel cell engine(FCE) energy regulation mathematic algorithm
下载PDF
Electrochemical Energy Storage Technologies and Applications
20
作者 Raul Diaz 《Journal of Energy and Power Engineering》 2014年第5期794-804,共11页
The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitivel... The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitively cover the wide range of possible demands, electrochemical technologies are one of the most promising for many of them. For the realization of this promise, new materials fulfilling criteria such as high energy density, high power density, competitive cost, reliability, and environmental compatibility need to be developed in the near future. Electrochemical energy storage devices can be classified into two main technologies: supercapacitors and batteries (including redox flow batteries). Materials and applications for these technologies are discussed and compared, listing current status, technical and strategic challenges. 展开更多
关键词 BATTERIES SUPERCAPACITORS renewable energy distributed generation electric transport.
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部