全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制,是诊断大气环流特征的重要方法。基于混合时空域能量循环框架,采用尺度分析方法,利用2022年中国气象局全球数值预报系统(CMA Global Forecast System,CM...全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制,是诊断大气环流特征的重要方法。基于混合时空域能量循环框架,采用尺度分析方法,利用2022年中国气象局全球数值预报系统(CMA Global Forecast System,CMA-GFS)全球预报产品及欧洲中期天气预报中心第5代再分析资料(ECMWF reanalysis version 5,ERA5),考察CMA-GFS不同尺度下的能量蓄能及转换特征,以此诊断模式的误差来源。结果表明:CMA-GFS可有效预报大气能量循环基本特征,但其对斜压性的高估导致平均环流有效位能偏强,且具有随预报时效逐渐增长的趋势。定常和瞬变涡动能量分别受行星尺度和天气及以下尺度分量主导。涡动有效位能误差由模式斜压性决定,其中CMA-GFS的定常涡动有效位能偏高而瞬变涡动有效位能偏低。定常和瞬变涡动动能均存在系统性低估,负误差主要集中在副热带急流和极夜急流中心附近,偏强的正压输送使更多能量向平均环流转换,涡动能量偏弱。CMA-GFS的4种涡动能量在冬季预报偏低,而在夏季偏高或略偏低,严重削弱了季节变化影响。展开更多
发展燃料电池汽车是解决传统燃油汽车导致的环境污染和能源危机问题的重要手段之一。能量管理策略是燃料电池汽车的重要技术核心。目前燃料电池汽车主要采用单一规则型能量管理策略,而该策略在不同动力电池初始荷电状态(State of Charge...发展燃料电池汽车是解决传统燃油汽车导致的环境污染和能源危机问题的重要手段之一。能量管理策略是燃料电池汽车的重要技术核心。目前燃料电池汽车主要采用单一规则型能量管理策略,而该策略在不同动力电池初始荷电状态(State of Charge,SOC)下难以使车辆达到最佳的经济性。提出了一种混合式燃料电池汽车能量管理策略,将功率跟随与模糊控制两种规则型能量管理策略相混合,并根据动力电池初始SOC进行能量管理策略的选择。通过Matlab/Simulink建立燃料电池混合动力系统以及整车动力学模型,基于该模型对混合式控制策略与有限状态机能量管理策略下燃料电池汽车的性能进行了对比分析。仿真结果表明:相比有限状态机能量管理策略,在低、中、高三种动力电池初始SOC下,混合式控制策略使燃料电池汽车经济性分别提高6%、19.9%以及27%。展开更多
文摘全球模式能量循环和能量转换规律可准确反映模式动力和物理过程相互作用的物理机制,是诊断大气环流特征的重要方法。基于混合时空域能量循环框架,采用尺度分析方法,利用2022年中国气象局全球数值预报系统(CMA Global Forecast System,CMA-GFS)全球预报产品及欧洲中期天气预报中心第5代再分析资料(ECMWF reanalysis version 5,ERA5),考察CMA-GFS不同尺度下的能量蓄能及转换特征,以此诊断模式的误差来源。结果表明:CMA-GFS可有效预报大气能量循环基本特征,但其对斜压性的高估导致平均环流有效位能偏强,且具有随预报时效逐渐增长的趋势。定常和瞬变涡动能量分别受行星尺度和天气及以下尺度分量主导。涡动有效位能误差由模式斜压性决定,其中CMA-GFS的定常涡动有效位能偏高而瞬变涡动有效位能偏低。定常和瞬变涡动动能均存在系统性低估,负误差主要集中在副热带急流和极夜急流中心附近,偏强的正压输送使更多能量向平均环流转换,涡动能量偏弱。CMA-GFS的4种涡动能量在冬季预报偏低,而在夏季偏高或略偏低,严重削弱了季节变化影响。
文摘发展燃料电池汽车是解决传统燃油汽车导致的环境污染和能源危机问题的重要手段之一。能量管理策略是燃料电池汽车的重要技术核心。目前燃料电池汽车主要采用单一规则型能量管理策略,而该策略在不同动力电池初始荷电状态(State of Charge,SOC)下难以使车辆达到最佳的经济性。提出了一种混合式燃料电池汽车能量管理策略,将功率跟随与模糊控制两种规则型能量管理策略相混合,并根据动力电池初始SOC进行能量管理策略的选择。通过Matlab/Simulink建立燃料电池混合动力系统以及整车动力学模型,基于该模型对混合式控制策略与有限状态机能量管理策略下燃料电池汽车的性能进行了对比分析。仿真结果表明:相比有限状态机能量管理策略,在低、中、高三种动力电池初始SOC下,混合式控制策略使燃料电池汽车经济性分别提高6%、19.9%以及27%。