期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于TVFEMD-IMF能量熵增量的桥梁监测数据降噪方法
1
作者 李双江 辛景舟 +3 位作者 蒋黎明 刘水康 巴建明 周建庭 《振动.测试与诊断》 EI CSCD 北大核心 2024年第1期178-185,206,共9页
针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥... 针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥梁监测数据降噪方法。首先,利用TVFEMD分解桥梁原始监测数据,得到多个子序列;其次,采用IMF能量熵增量确定多个子序列中的有效子序列;然后,划分子序列中的结构响应分量和噪声分量,对结构响应分量重组实现监测数据降噪;最后,利用平均绝对误差(mean absolute error,简称MAE)、均方根误差(root mean squared error,简称RMSE)和信噪比(signal-noise ratio,简称SNR)对不同方法的降噪效果进行评价。仿真算例和工程实例结果表明:TVFEMD相比经验模态分解(empirical mode decomposition,简称EMD),有效解决了模态混叠问题;TVFEMD结合IMF能量熵增量方法,有效抑制了多重噪声影响,对结果精度有较大提升;与EMD-IMF能量熵增量和Kalman滤波降噪法相比,TVFEMD-IMF能量熵增量法所得到降噪信号的MAE和RMSE值分别提升了23%和21%以上,降噪效果更好,信噪比提升38%以上,抗噪性能更佳。 展开更多
关键词 桥梁 健康监测 降噪 时变滤波经验模态分解 本征模函数能量熵增量
下载PDF
基于SVD-SGWT和IMF能量熵增量的液压故障特征提取 被引量:3
2
作者 柴凯 张梅军 +1 位作者 黄杰 赵晶 《机械设计与制造》 北大核心 2015年第3期51-54,共4页
针对随机噪声和虚假分量影响总体平均经验模态分解(EEMD)分解质量问题,提出基于奇异值分解(SVD)和第二代小波变换(SGWT)联合降噪预处理和本征模态分量(IMF)能量熵增量剔除虚假分量的改进EEMD方法。该方法首先对原始信号进行第二代小波变... 针对随机噪声和虚假分量影响总体平均经验模态分解(EEMD)分解质量问题,提出基于奇异值分解(SVD)和第二代小波变换(SGWT)联合降噪预处理和本征模态分量(IMF)能量熵增量剔除虚假分量的改进EEMD方法。该方法首先对原始信号进行第二代小波变换,利用SVD对SGWT得到的高频系数进行降噪处理,克服了软、硬阈值法降噪的缺陷。然后对消噪处理的信号进行EEMD分解,通过IMF能量熵增量去除虚假分量;最后对主IMF分量进行Hilbert谱分析来提取信号的主要特征。仿真和实验结果表明,SVD和SGWT联合降噪故障信号信噪比显著提高,且失真度小,抑制了噪声对EEMD分解精度的干扰,能量熵增量能有效地去除虚假IMF,Hilbert谱中各频率成分清晰不混叠,成功提取了液压系统故障特征频率。 展开更多
关键词 奇异值分解 第二代小波变换 总体平均经验模态分解 固有模态函数 能量熵增量 故障特征提取
下载PDF
基于SGMD及LWOA-ELM的有限元模型修正
3
作者 赵宇 彭珍瑞 《计算力学学报》 CAS CSCD 北大核心 2023年第2期255-263,共9页
为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,... 为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,采用能量熵增量法确定重组辛几何分量(SGC)构成SGC矩阵。然后,利用LWOA对ELM的权值和阈值进行优化,提高ELM模型的预测效率,以LWOA-ELM为代理模型映射出待修正参数与SGC矩阵之间的关系。最后,以试验频响函数SGC矩阵与LWOA-ELM模型输出所得矩阵差值的F-范数最小为目标函数,结合LWOA求解待修正参数。算例分析表明,提出的方法用于有限元模型修正有较好的可行性和有效性。以SGC矩阵表征AFRF的修正方法,有较好的噪声鲁棒性;LWOA-ELM作为代理模型预测精度高,泛化能力强。 展开更多
关键词 模型修正 辛几何模态分解 能量熵增量 极限学习机 鲸鱼优化算法
下载PDF
基于EEMD-JADE的桥梁挠度监测中温度效应的分离 被引量:6
4
作者 谭冬梅 刘晓飞 +2 位作者 姚欢 聂顺 吴浩 《土木与环境工程学报(中英文)》 CSCD 北大核心 2020年第3期90-99,共10页
针对桥梁挠度各成分的分离问题,提出一种基于EEMD-JADE的单通道盲源分离算法。首先,利用传统的集合经验模态分解法(Ensemble Empirical Mode Decomposition,EEMD)将单通道的桥梁挠度信号分解为一系列线性平稳的本征模函数(Intrinsic Mod... 针对桥梁挠度各成分的分离问题,提出一种基于EEMD-JADE的单通道盲源分离算法。首先,利用传统的集合经验模态分解法(Ensemble Empirical Mode Decomposition,EEMD)将单通道的桥梁挠度信号分解为一系列线性平稳的本征模函数(Intrinsic Mode Function,IMF);然后,采用基于能量熵增量的判别法识别并剔除虚假的IMF分量,将能量熵增量较大的IMF分量组成盲源分离模型的输入信号;最后,采用矩阵联合近似对角化(Joint Approximate Diagonalization of Eigen-matrices,JADE)算法对输入信号进行盲源分离。JADE算法在源信号频率差异较小且频率有所混叠的状况下也能较好地分离出源信号,但要求观测信号数必须大于等于源信号数目;EEMD具有良好的自适应性,能够将单通道的混合信号进行多尺度分解,形成多通道信号,但分解结果存在端点效应与模态混叠。JADE算法能够解决EEMD分解结果存在的端点效应与模态混叠问题,且EEMD也解决了JADE分离算法的先决条件。两种算法优势互补,能够较好地分离出各挠度组分。通过有限元软件Midas/civil建立了背景桥梁模型,经仿真分析得到了各单项因素作用下的桥梁结构响应,并将其叠加在一起作为待分离的混合挠度信号。仿真信号分离的结果与源信号的相关系数均在0.98以上,说明分离效果较好。最后,采集实测挠度信号进行分离,处于对称位置测点分离出的各挠度组分的相关系数均在0.9以上,证明了该算法的适用性。 展开更多
关键词 盲源分离 模态分解 能量熵增量 矩阵联合近似对角化 挠度监测
下载PDF
基于改进VMD的液压系统故障特征提取 被引量:4
5
作者 丰少伟 柴凯 +2 位作者 朱石坚 杨庆超 楼京俊 《海军工程大学学报》 CAS 北大核心 2021年第2期6-13,29,共9页
为从液压系统振动信号中提取有效特征进行故障诊断,针对随机噪声、端点效应和虚假分量会影响变分模态分解(VMD)的分解精度问题,提出了一种改进VMD的故障特征提取方法。首先,针对随机噪声会导致分解误差增大现象,提出了基于奇异值差分谱... 为从液压系统振动信号中提取有效特征进行故障诊断,针对随机噪声、端点效应和虚假分量会影响变分模态分解(VMD)的分解精度问题,提出了一种改进VMD的故障特征提取方法。首先,针对随机噪声会导致分解误差增大现象,提出了基于奇异值差分谱降噪预处理,该方法能抑制噪声对分解结果的干扰;然后,针对端点效应会导致VMD处理信号两端产生明显的飞翼现象,提出了基于支持向量回归机的端点延拓,该方法具有较高的拟合精度;最后,针对虚假本征模态函数(IMF)分量会导致VMD处理出现能量泄漏现象,提出了IMF能量熵增量的虚假分量剔除,该方法的真假分量具有区分性。仿真信号和实测液压信号分析表明:改进VMD能有效改善传统VMD方法在特征提取上的三个不足,可准确提取液压故障信号的主要特征频率,实现液压系统故障的精确诊断。 展开更多
关键词 液压系统 变分模态分解 奇异值差分谱 支持向量回归机 本征模态函数 能量熵增量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部