Two coaxial vertical cylinders-one is a riding hollow cylinder and the other a solid cylinder of greater radius at some distance above an impermeable horizontal bottom,were considered.This problem of diffraction by th...Two coaxial vertical cylinders-one is a riding hollow cylinder and the other a solid cylinder of greater radius at some distance above an impermeable horizontal bottom,were considered.This problem of diffraction by these two cylinders,which were considered as idealization of a buoy and a circular plate,can be considered as a wave energy device.The wave energy that is created and transferred by this device can be appropriately used in many applications in lieu of conventional energy.Method of separation of variables was used to obtain the analytical expressions for the diffracted potentials in four clearly identified regions.By applying the appropriate matching conditions along the three virtual boundaries between the regions,a system of linear equations was obtained,which was solved for the unknown coefficients.The potentials allowed us to obtain the exciting forces acting on both cylinders.Sets of exciting forces were obtained for different radii of the cylinders and for different gaps between the cylinders.It was observed that changes in radius and the gap had significant effect on the forces.It was found that mostly the exciting forces were significant only at lower frequencies.The exciting forces almost vanished at higher frequencies.The problem was also investigated for the base case of no plate arrangement,i.e.,the case having only the floating cylinder tethered to the sea-bed.Comparison of forces for both arrangements was carried out.In order to take care of the radiation of the cylinders due to surge motion,the corresponding added mass and the damping coefficients for both cylinders were also computed.All the results were depicted graphically and compared with available results.展开更多
The path-integral quantization of thermal scalar, vector, and spinor fields is performed newly in the coherent-state representation. In doing this, we choose the thermal electrodynamics and psi(4) theory as,examples. ...The path-integral quantization of thermal scalar, vector, and spinor fields is performed newly in the coherent-state representation. In doing this, we choose the thermal electrodynamics and psi(4) theory as,examples. By this quantization, correct expressions of the partition functions and the generating functionals for the quantum thermal electrodynamics and psi(4) theory are obtained in the coherent-state representation. These expressions allow us to perform analytical calculations of the partition functions and generating functionals and therefore are useful in practical applications. Especially, the perturbative expansions of the generating functionals are derived specifically by virtue of the stationary-phase method. The generating functionals formulated in the position space are re-derived from the ones given in the coherent-state representation.展开更多
文摘Two coaxial vertical cylinders-one is a riding hollow cylinder and the other a solid cylinder of greater radius at some distance above an impermeable horizontal bottom,were considered.This problem of diffraction by these two cylinders,which were considered as idealization of a buoy and a circular plate,can be considered as a wave energy device.The wave energy that is created and transferred by this device can be appropriately used in many applications in lieu of conventional energy.Method of separation of variables was used to obtain the analytical expressions for the diffracted potentials in four clearly identified regions.By applying the appropriate matching conditions along the three virtual boundaries between the regions,a system of linear equations was obtained,which was solved for the unknown coefficients.The potentials allowed us to obtain the exciting forces acting on both cylinders.Sets of exciting forces were obtained for different radii of the cylinders and for different gaps between the cylinders.It was observed that changes in radius and the gap had significant effect on the forces.It was found that mostly the exciting forces were significant only at lower frequencies.The exciting forces almost vanished at higher frequencies.The problem was also investigated for the base case of no plate arrangement,i.e.,the case having only the floating cylinder tethered to the sea-bed.Comparison of forces for both arrangements was carried out.In order to take care of the radiation of the cylinders due to surge motion,the corresponding added mass and the damping coefficients for both cylinders were also computed.All the results were depicted graphically and compared with available results.
文摘The path-integral quantization of thermal scalar, vector, and spinor fields is performed newly in the coherent-state representation. In doing this, we choose the thermal electrodynamics and psi(4) theory as,examples. By this quantization, correct expressions of the partition functions and the generating functionals for the quantum thermal electrodynamics and psi(4) theory are obtained in the coherent-state representation. These expressions allow us to perform analytical calculations of the partition functions and generating functionals and therefore are useful in practical applications. Especially, the perturbative expansions of the generating functionals are derived specifically by virtue of the stationary-phase method. The generating functionals formulated in the position space are re-derived from the ones given in the coherent-state representation.